PSMC5
Gene Ontology Biological Process
- DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest [TAS]
- G1/S transition of mitotic cell cycle [TAS]
- RNA metabolic process [TAS]
- anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process [TAS]
- antigen processing and presentation of exogenous peptide antigen via MHC class I [TAS]
- antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent [TAS]
- antigen processing and presentation of peptide antigen via MHC class I [TAS]
- apoptotic process [TAS]
- cellular nitrogen compound metabolic process [TAS]
- gene expression [TAS]
- mRNA metabolic process [TAS]
- mitotic cell cycle [TAS]
- negative regulation of apoptotic process [TAS]
- negative regulation of programmed cell death [NAS]
- negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- positive regulation of transcription, DNA-templated [NAS]
- positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- proteasome-mediated ubiquitin-dependent protein catabolic process [IDA]
- protein polyubiquitination [TAS]
- regulation of apoptotic process [TAS]
- regulation of cellular amino acid metabolic process [TAS]
- regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- small molecule metabolic process [TAS]
- transcription from RNA polymerase II promoter [TAS]
- viral process [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
USP14
Gene Ontology Biological Process
- negative regulation of ER-associated ubiquitin-dependent protein catabolic process [IMP]
- negative regulation of endopeptidase activity [IMP]
- proteasome-mediated ubiquitin-dependent protein catabolic process [IBA]
- protein deubiquitination [IDA]
- regulation of chemotaxis [IMP]
- regulation of proteasomal protein catabolic process [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development.
Rpn10 is a subunit of the 26S proteasome that recognizes polyubiquitinated proteins. The importance of Rpn10 in ubiquitin-mediated proteolysis is debatable, since a deficiency of Rpn10 causes different phenotypes in different organisms. To date, the role of mammalian Rpn10 has not been examined genetically. Moreover, vertebrates have five splice variants of Rpn10 whose expressions are developmentally regulated, but their biological ... [more]
Throughput
- Low Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
USP14 PSMC5 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
USP14 PSMC5 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 1.66 | BioGRID | 423288 | |
USP14 PSMC5 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 2776434 | |
USP14 PSMC5 | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | 0.2781 | BioGRID | 1268007 |
Curated By
- BioGRID