BAIT

RPN4

SON1, UFD5, stress-regulated transcription factor RPN4, L000001984, YDL020C
Transcription factor that stimulates expression of proteasome genes; Rpn4p levels are in turn regulated by the 26S proteasome in a negative feedback control mechanism; RPN4 is transcriptionally regulated by various stress responses; relative distribution to the nucleus increases upon DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

RPN2

SEN3, proteasome regulatory particle base subunit RPN2, L000001864, YIL075C
Subunit of the 26S proteasome; substrate of the N-acetyltransferase Nat1p; protein abundance increases in response to DNA replication stress
GO Process (2)
GO Function (2)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Publication

The N-terminal domain of Rpn4 serves as a portable ubiquitin-independent degron and is recognized by specific 19S RP subunits.

Ha SW, Ju D, Xie Y

The number of proteasomal substrates that are degraded without prior ubiquitylation continues to grow. However, it remains poorly understood how the proteasome recognizes substrates lacking a ubiquitin (Ub) signal. Here we demonstrated that the Ub-independent degradation of Rpn4 requires the 19S regulatory particle (RP). The Ub-independent degron of Rpn4 was mapped to an N-terminal region including the first 80 residues. ... [more]

Biochem. Biophys. Res. Commun. Mar. 09, 2012; 419(2);226-31 [Pubmed: 22349505]

Throughput

  • Low Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RPN2 RPN4
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low-BioGRID
-
RPN4 RPN2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
163628
RPN4 RPN2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
161267

Curated By

  • BioGRID