SMARCA4
Gene Ontology Biological Process
- ATP catabolic process [IGI]
- ATP-dependent chromatin remodeling [IDA]
- chromatin remodeling [IC, IDA]
- negative regulation of G1/S transition of mitotic cell cycle [TAS]
- negative regulation of androgen receptor signaling pathway [IMP]
- negative regulation of cell growth [IMP]
- negative regulation of transcription from RNA polymerase II promoter [TAS]
- negative regulation of transcription from RNA polymerase II promoter during mitosis [TAS]
- negative regulation of transcription, DNA-templated [IDA, IMP]
- neural retina development [IEP]
- nucleosome disassembly [IDA]
- positive regulation by host of viral transcription [IMP]
- positive regulation of Wnt signaling pathway [IMP]
- positive regulation of sequence-specific DNA binding transcription factor activity [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IGI]
- positive regulation of transcription, DNA-templated [IMP]
- regulation of transcription from RNA polymerase II promoter [NAS]
Gene Ontology Molecular Function- DNA polymerase binding [IPI]
- DNA-dependent ATPase activity [IGI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- RNA polymerase II transcription coactivator activity [IDA]
- Tat protein binding [IPI]
- androgen receptor binding [IPI]
- lysine-acetylated histone binding [IDA]
- nucleosomal DNA binding [IDA]
- p53 binding [IPI]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- transcription coactivator activity [IMP, NAS]
- transcription corepressor activity [IDA]
- DNA polymerase binding [IPI]
- DNA-dependent ATPase activity [IGI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- RNA polymerase II transcription coactivator activity [IDA]
- Tat protein binding [IPI]
- androgen receptor binding [IPI]
- lysine-acetylated histone binding [IDA]
- nucleosomal DNA binding [IDA]
- p53 binding [IPI]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- transcription coactivator activity [IMP, NAS]
- transcription corepressor activity [IDA]
Gene Ontology Cellular Component
ACTC1
Gene Ontology Biological Process
- ATP catabolic process [IDA]
- actin filament-based movement [IDA]
- actin-myosin filament sliding [IMP]
- actomyosin structure organization [ISS]
- apoptotic process [ISS]
- cardiac muscle tissue morphogenesis [ISS]
- cardiac myofibril assembly [ISS]
- heart contraction [IMP]
- muscle filament sliding [TAS]
- skeletal muscle thin filament assembly [ISS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
Heterocomplex Formation by Arp4 and β-Actin Involved in Integrity of the Brg1 Chromatin Remodeling Complex.
Although nuclear actin and Arps (actin-related proteins) are often identified as components of multi-protein, chromatin-modifying enzyme complexes such as chromatin remodeling and histone acetyltransferase (HAT) complexes, their molecular functions still remain largely elusive. We have investigated the role of BAF53/human Arp4 in Brg1 chromatin remodeling complexes. Depletion of Arp4 by RNA interference impaired their integrity and accelerated degradation of Brg1, ... [more]
Throughput
- Low Throughput
Additional Notes
- figure 2C.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
ACTC1 SMARCA4 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
ACTC1 SMARCA4 | Proximity Label-MS Proximity Label-MS An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods. | High | - | BioGRID | - |
Curated By
- BioGRID