ABL1
Gene Ontology Biological Process
- DNA damage induced protein phosphorylation [IDA]
- Fc-gamma receptor signaling pathway involved in phagocytosis [TAS]
- actin cytoskeleton organization [ISS]
- axon guidance [TAS]
- blood coagulation [TAS]
- cell cycle arrest [TAS]
- cell differentiation [IBA]
- cell migration [IBA]
- cellular protein modification process [NAS]
- cellular response to DNA damage stimulus [IDA]
- cellular response to dopamine [TAS]
- cellular response to oxidative stress [TAS]
- epidermal growth factor receptor signaling pathway [IBA]
- innate immune response [IBA, TAS]
- intrinsic apoptotic signaling pathway in response to DNA damage [TAS]
- mismatch repair [TAS]
- mitochondrial depolarization [TAS]
- mitotic nuclear division [TAS]
- muscle cell differentiation [TAS]
- negative regulation of phospholipase C activity [IMP]
- negative regulation of protein serine/threonine kinase activity [IDA]
- negative regulation of ubiquitin-protein transferase activity [IDA, TAS]
- peptidyl-tyrosine autophosphorylation [IBA]
- peptidyl-tyrosine phosphorylation [IDA, TAS]
- platelet-derived growth factor receptor signaling pathway [IBA]
- positive regulation of apoptotic process [IDA]
- positive regulation of cytosolic calcium ion concentration [IMP]
- positive regulation of muscle cell differentiation [TAS]
- positive regulation of oxidoreductase activity [IDA]
- positive regulation of peptidyl-tyrosine phosphorylation [IDA]
- regulation of actin cytoskeleton reorganization [TAS]
- regulation of autophagy [TAS]
- regulation of cell adhesion [TAS]
- regulation of cell motility [TAS]
- regulation of cell proliferation [IBA]
- regulation of endocytosis [TAS]
- regulation of response to DNA damage stimulus [IDA]
- regulation of transcription, DNA-templated [TAS]
- response to oxidative stress [IGI]
- signal transduction in response to DNA damage [IDA]
Gene Ontology Molecular Function- ATP binding [IDA]
- DNA binding [NAS]
- SH3 domain binding [IPI]
- actin monomer binding [TAS]
- magnesium ion binding [IDA]
- manganese ion binding [IDA]
- mitogen-activated protein kinase binding [IPI]
- nicotinate-nucleotide adenylyltransferase activity [TAS]
- non-membrane spanning protein tyrosine kinase activity [IDA]
- proline-rich region binding [IDA, IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein kinase activity [IDA]
- protein tyrosine kinase activity [IDA]
- receptor binding [IBA]
- syntaxin binding [IPI]
- ATP binding [IDA]
- DNA binding [NAS]
- SH3 domain binding [IPI]
- actin monomer binding [TAS]
- magnesium ion binding [IDA]
- manganese ion binding [IDA]
- mitogen-activated protein kinase binding [IPI]
- nicotinate-nucleotide adenylyltransferase activity [TAS]
- non-membrane spanning protein tyrosine kinase activity [IDA]
- proline-rich region binding [IDA, IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein kinase activity [IDA]
- protein tyrosine kinase activity [IDA]
- receptor binding [IBA]
- syntaxin binding [IPI]
Gene Ontology Cellular Component
PSMA7
Gene Ontology Biological Process
- DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest [TAS]
- G1/S transition of mitotic cell cycle [TAS]
- RNA metabolic process [TAS]
- anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process [TAS]
- antigen processing and presentation of exogenous peptide antigen via MHC class I [TAS]
- antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent [TAS]
- antigen processing and presentation of peptide antigen via MHC class I [TAS]
- apoptotic process [TAS]
- cellular nitrogen compound metabolic process [TAS]
- gene expression [TAS]
- mRNA metabolic process [TAS]
- mitotic cell cycle [TAS]
- negative regulation of apoptotic process [TAS]
- negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- protein polyubiquitination [TAS]
- regulation of apoptotic process [TAS]
- regulation of cellular amino acid metabolic process [TAS]
- regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- small molecule metabolic process [TAS]
- viral process [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Co-fractionation
Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex.
Publication
Interaction between c-Abl and Arg tyrosine kinases and proteasome subunit PSMA7 regulates proteasome degradation.
Proteasome-mediated proteolysis is a primary protein degradation pathway in cells. The present study demonstrates that c-Abl and Arg (abl-related gene) tyrosine kinases associate with and phosphorylate the proteasome PSMA7 (alpha4) subunit at Tyr-153. Consequently, proteasome-dependent proteolysis is compromised. Notably, cells expressing a phosphorylation mutant of PSMA7(Y153F) display impaired G1/S transition and S/G2 progression, highlighting the biological significance of tyrosine phosphorylation ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| PSMA7 ABL1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | 1508509 | |
| PSMA7 ABL1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| ABL1 PSMA7 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| ABL1 PSMA7 | Biochemical Activity Biochemical Activity An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation. | Low | - | BioGRID | 668423 |
Curated By
- BioGRID