BAIT
SP1
Sp1 transcription factor
GO Process (10)
GO Function (16)
GO Component (2)
Gene Ontology Biological Process
- cellular lipid metabolic process [TAS]
- gene expression [TAS]
- positive regulation by host of viral transcription [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA, TAS]
- positive regulation of transcription, DNA-templated [IDA]
- regulation of transcription, DNA-templated [IDA]
- small molecule metabolic process [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
- transforming growth factor beta receptor signaling pathway [TAS]
Gene Ontology Molecular Function- DNA binding [IDA]
- HMG box domain binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [ISS]
- RNA polymerase II repressing transcription factor binding [ISS]
- bHLH transcription factor binding [ISS]
- core promoter sequence-specific DNA binding [ISS]
- double-stranded DNA binding [IDA]
- histone deacetylase binding [IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- sequence-specific DNA binding [IDA]
- sequence-specific DNA binding RNA polymerase II transcription factor activity [IBA]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- DNA binding [IDA]
- HMG box domain binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [ISS]
- RNA polymerase II repressing transcription factor binding [ISS]
- bHLH transcription factor binding [ISS]
- core promoter sequence-specific DNA binding [ISS]
- double-stranded DNA binding [IDA]
- histone deacetylase binding [IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- sequence-specific DNA binding [IDA]
- sequence-specific DNA binding RNA polymerase II transcription factor activity [IBA]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
Gene Ontology Cellular Component
- nucleoplasm [IDA, TAS]
- nucleus [IC]
Homo sapiens
PREY
CALM1
CALML2, CAMI, CPVT4, DD132, PHKD, caM
calmodulin 1 (phosphorylase kinase, delta)
GO Process (43)
GO Function (11)
GO Component (13)
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- G-protein coupled receptor signaling pathway [TAS]
- activation of phospholipase C activity [TAS]
- blood coagulation [TAS]
- carbohydrate metabolic process [TAS]
- detection of calcium ion [IMP]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- glucose metabolic process [TAS]
- glycogen catabolic process [TAS]
- innate immune response [TAS]
- inositol phosphate metabolic process [TAS]
- membrane organization [TAS]
- muscle contraction [TAS]
- negative regulation of peptidyl-threonine phosphorylation [TAS]
- negative regulation of ryanodine-sensitive calcium-release channel activity [ISS]
- neurotrophin TRK receptor signaling pathway [TAS]
- nitric oxide metabolic process [TAS]
- phototransduction, visible light [TAS]
- platelet activation [TAS]
- platelet degranulation [TAS]
- positive regulation of cyclic nucleotide metabolic process [IDA]
- positive regulation of cyclic-nucleotide phosphodiesterase activity [IDA]
- positive regulation of peptidyl-threonine phosphorylation [TAS]
- positive regulation of phosphoprotein phosphatase activity [IDA]
- positive regulation of protein autophosphorylation [TAS]
- positive regulation of protein dephosphorylation [IDA]
- positive regulation of protein serine/threonine kinase activity [TAS]
- positive regulation of ryanodine-sensitive calcium-release channel activity [IDA]
- regulation of cardiac muscle contraction [IMP]
- regulation of cardiac muscle contraction by regulation of the release of sequestered calcium ion [IC]
- regulation of cell communication by electrical coupling involved in cardiac conduction [IC]
- regulation of cytokinesis [IMP]
- regulation of heart rate [IMP]
- regulation of nitric-oxide synthase activity [TAS]
- regulation of release of sequestered calcium ion into cytosol by sarcoplasmic reticulum [IDA]
- regulation of rhodopsin mediated signaling pathway [TAS]
- response to calcium ion [IDA]
- rhodopsin mediated signaling pathway [TAS]
- signal transduction [TAS]
- small molecule metabolic process [TAS]
- substantia nigra development [IEP]
- synaptic transmission [TAS]
Gene Ontology Molecular Function- N-terminal myristoylation domain binding [IPI]
- calcium ion binding [IDA, ISS]
- ion channel binding [IPI]
- phospholipase binding [IPI]
- protein binding [IPI]
- protein domain specific binding [IPI]
- protein kinase binding [IPI]
- protein phosphatase activator activity [IDA]
- protein serine/threonine kinase activator activity [TAS]
- thioesterase binding [IPI]
- titin binding [IPI]
- N-terminal myristoylation domain binding [IPI]
- calcium ion binding [IDA, ISS]
- ion channel binding [IPI]
- phospholipase binding [IPI]
- protein binding [IPI]
- protein domain specific binding [IPI]
- protein kinase binding [IPI]
- protein phosphatase activator activity [IDA]
- protein serine/threonine kinase activator activity [TAS]
- thioesterase binding [IPI]
- titin binding [IPI]
Gene Ontology Cellular Component
Homo sapiens
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Sp1 phosphorylation by cyclin-dependent kinase 1/cyclin B1 represses its DNA-binding activity during mitosis in cancer cells.
Sp1 is important for the transcription of many genes. Our previous studies have shown that Sp1 is degraded in normal cell, but it is preserved in cancer cells during mitosis and exists a priori in the daughter cells, ready to engage in gene transcription and thereby contributes to the proliferation and survival of cancer cells. The mechanism by which Sp1 ... [more]
Unknown Jan. 23, 2012; 0(0); [Pubmed: 22266860]
Throughput
- High Throughput
Additional Notes
- table S1.
Curated By
- BioGRID