PSMD10
Gene Ontology Biological Process
- DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest [TAS]
- G1/S transition of mitotic cell cycle [TAS]
- RNA metabolic process [TAS]
- anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process [TAS]
- antigen processing and presentation of exogenous peptide antigen via MHC class I [TAS]
- antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent [TAS]
- antigen processing and presentation of peptide antigen via MHC class I [TAS]
- apoptotic process [TAS]
- cellular nitrogen compound metabolic process [TAS]
- cytoplasmic sequestering of NF-kappaB [IDA]
- gene expression [TAS]
- mRNA metabolic process [TAS]
- mitotic cell cycle [TAS]
- negative regulation of DNA damage response, signal transduction by p53 class mediator [IDA]
- negative regulation of MAPK cascade [IMP]
- negative regulation of NF-kappaB transcription factor activity [IDA]
- negative regulation of apoptotic process [IDA, IMP, TAS]
- negative regulation of release of cytochrome c from mitochondria [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- positive regulation of cell growth [IDA]
- positive regulation of cyclin-dependent protein serine/threonine kinase activity [IDA]
- positive regulation of proteasomal ubiquitin-dependent protein catabolic process [IDA, TAS]
- positive regulation of protein ubiquitination [IMP]
- positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- proteasome regulatory particle assembly [IMP]
- protein polyubiquitination [TAS]
- regulation of apoptotic process [TAS]
- regulation of cellular amino acid metabolic process [TAS]
- regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- small molecule metabolic process [TAS]
- viral process [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
MAGEA4
Gene Ontology Molecular Function
Two-hybrid
Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.
Publication
MAGE-A4 interacts with the liver oncoprotein gankyrin and suppresses its tumorigenic activity.
Hepatocellular carcinoma ranks among the most common malignancies in Southeast Asia and South Africa. Although there are many modalities of treatment, the recurrence and metastasis rates are high, and the prognosis is unsatisfactory. Gankyrin, a recently found oncoprotein, is a promising target for drug therapy because it is overexpressed in all studied hepatocellular carcinomas. Gankyrin contains six ankyrin repeats and ... [more]
Throughput
- Low Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
PSMD10 MAGEA4 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
MAGEA4 PSMD10 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - |
Curated By
- BioGRID