BAIT

SET2

EZL1, histone methyltransferase SET2, KMT3, L000003090, YJL168C
Histone methyltransferase with a role in transcriptional elongation; methylates H3 lysine 36 (H3K36), which suppresses incorporation of acetylated histones and signals for the deacetylation of these histones within transcribed genes; associates with the C-terminal domain(CTD) of Rpo21p; H3K36me3 (trimethylation) requires Spt6p, proline 38 on H3, CTD of Rpo21p, Ctk1p, and C-terminal SRI domain of Ste2p; relocalizes to the cytosol in response to hypoxia
Saccharomyces cerevisiae (S288c)
PREY

RPT4

CRL13, PCS1, SUG2, proteasome regulatory particle base subunit RPT4, L000003423, L000003107, L000000413, YOR259C
ATPase of the 19S regulatory particle of the 26S proteasome; one of six ATPases of the regulatory particle; involved in degradation of ubiquitinated substrates; contributes preferentially to ERAD; required for spindle pole body duplication; mainly nuclear localization
Saccharomyces cerevisiae (S288c)

Two-hybrid

Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

Publication

Coiled-Coil Networking Shapes Cell Molecular Machinery.

Wang Y, Zhang X, Zhang H, Lu Y, Huang H, Dong X, Chen J, Dong J, Yang X, Hang H, Jiang T

The highly abundant alpha-helical coiled-coil motif not only mediates crucial protein-protein interactions in the cell, but is also an attractive scaffold in synthetic biology and material science and a potential target for disease intervention. Therefore, a systematic understanding of the coiled-coil interactions at the organismal level would help unravel the full spectrum of the biological function of this interaction motif ... [more]

Mol. Biol. Cell Aug. 08, 2012; 0(0); [Pubmed: 22875988]

Throughput

  • High Throughput

Additional Notes

  • Interaction between cloned coiled-coil domains

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RPT4 SET2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2076BioGRID
2018560

Curated By

  • BioGRID