BAIT

CBC2

CBP20, MUD13, SAE1, L000002891, L000004111, YPL178W
Small subunit of the heterodimeric cap binding complex with Sto1p; interacts with Npl3p, possibly to package mRNA for export from the nucleus; may have a role in telomere maintenance; contains an RNA-binding motif
GO Process (1)
GO Function (1)
GO Component (2)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

IST3

SNU17, YIR005W
Component of the U2 snRNP; required for the first catalytic step of splicing and for spliceosomal assembly; interacts with Rds3p and is required for Mer1p-activated splicing; diploid mutants have a specific defect in MATa1 pre-mRNA splicing which leads to haploid gene expression in diploids
GO Process (4)
GO Function (1)
GO Component (2)
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Genetic interactions of hypomorphic mutations in the m7G cap-binding pocket of yeast nuclear cap binding complex: An essential role for Cbc2 in meiosis via splicing of MER3 pre-mRNA.

Qiu ZR, Chico L, Chang J, Shuman S, Schwer B

Nuclear cap binding protein complex (CBC) is a heterodimer of a small subunit (Cbc2 in yeast) that binds the m(7)G cap and a large subunit (Sto1 in yeast) that interacts with karyopherins. In order to probe the role of cap recognition in yeast CBC function, we introduced alanine mutations (Y24A, F91A, D120A, D122A, R129A, and R133A) and N-terminal deletions (NΔ21 ... [more]

RNA Nov. 01, 2012; 18(11);1996-2011 [Pubmed: 23002122]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • cbc2-Y24A allele

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
IST3 CBC2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-10.9678BioGRID
310801

Curated By

  • BioGRID