NAP1L4
Gene Ontology Molecular Function
NPM1
Gene Ontology Biological Process
- CENP-A containing nucleosome assembly [TAS]
- DNA repair [IDA]
- cell aging [IMP, ISS]
- centrosome cycle [IMP, ISS]
- intracellular protein transport [TAS]
- negative regulation of apoptotic process [IDA, NAS]
- negative regulation of cell proliferation [IMP, ISS]
- negative regulation of centrosome duplication [IMP]
- negative regulation of protein kinase activity by regulation of protein phosphorylation [IDA]
- nucleocytoplasmic transport [IDA, TAS]
- nucleosome assembly [IDA, TAS]
- positive regulation of NF-kappaB transcription factor activity [IMP]
- positive regulation of translation [IDA]
- protein localization [IDA]
- protein oligomerization [IDA]
- regulation of centriole replication [IMP]
- regulation of eIF2 alpha phosphorylation by dsRNA [IDA]
- regulation of endodeoxyribonuclease activity [IDA]
- regulation of endoribonuclease activity [IDA]
- response to stress [IMP]
- ribosome assembly [TAS]
- signal transduction [NAS]
- viral process [TAS]
Gene Ontology Molecular Function- NF-kappaB binding [IDA, ISS]
- RNA binding [IDA]
- Tat protein binding [IDA]
- histone binding [IDA]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein heterodimerization activity [IMP]
- protein homodimerization activity [IDA]
- protein kinase binding [IPI]
- protein kinase inhibitor activity [IDA]
- ribosomal large subunit binding [IDA]
- ribosomal small subunit binding [IDA]
- transcription coactivator activity [IDA]
- unfolded protein binding [IDA, ISS]
- NF-kappaB binding [IDA, ISS]
- RNA binding [IDA]
- Tat protein binding [IDA]
- histone binding [IDA]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein heterodimerization activity [IMP]
- protein homodimerization activity [IDA]
- protein kinase binding [IPI]
- protein kinase inhibitor activity [IDA]
- ribosomal large subunit binding [IDA]
- ribosomal small subunit binding [IDA]
- transcription coactivator activity [IDA]
- unfolded protein binding [IDA, ISS]
Gene Ontology Cellular Component
Co-fractionation
Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex.
Publication
A census of human soluble protein complexes.
Cellular processes often depend on stable physical associations between proteins. Despite recent progress, knowledge of the composition of human protein complexes remains limited. To close this gap, we applied an integrative global proteomic profiling approach, based on chromatographic separation of cultured human cell extracts into more than one thousand biochemical fractions that were subsequently analyzed by quantitative tandem mass spectrometry, ... [more]
Quantitative Score
- 0.789 [Denoised score]
Throughput
- High Throughput
Additional Notes
- Denoised score >= 0.75
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
NPM1 NAP1L4 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 1445683 |
Curated By
- BioGRID