BAIT

TBF1

LPI16, L000002264, YPL128C
Telobox-containing general regulatory factor; binds TTAGGG repeats within subtelomeric anti-silencing regions (STARs), blocking silent chromatin propagation; binds majority of snoRNA gene promoters, required for full snoRNA expression; caps DSB flanked by long T2AG3 repeats and blocks checkpoint activation
Saccharomyces cerevisiae (S288c)
PREY

MRE11

NGS1, RAD58, XRS4, MRX complex nuclease subunit, L000004732, L000001149, L000004275, YMR224C
Nuclease subunit of the MRX complex with Rad50p and Xrs2p; complex functions in repair of DNA double-strand breaks and in telomere stability; Mre11p associates with Ser/Thr-rich ORFs in premeiotic phase; nuclease activity required for MRX function; widely conserved; forms nuclear foci upon DNA replication stress
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Tbf1 and Vid22 promote resection and non-homologous end joining of DNA double-strand break ends.

Bonetti D, Anbalagan S, Lucchini G, Clerici M, Longhese MP

The repair of DNA double-strand breaks (DSBs) is crucial for maintaining genome stability. The Saccharomyces cerevisiae protein Tbf1, which is characterized by a Myb domain and is related to mammalian TRF1 and TRF2, has been proposed to act as a transcriptional activator. Here, we show that Tbf1 and its interacting protein Vid22 are new players in the response to DSBs. ... [more]

EMBO J. Dec. 07, 2012; 0(0); [Pubmed: 23222485]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • 25 deg C

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
MRE11 TBF1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1235BioGRID
2063048

Curated By

  • BioGRID