BAIT

NPL3

MTR13, MTS1, NAB1, NOP3, mRNA-binding protein NPL3, L000001270, YDR432W
RNA-binding protein; promotes elongation, regulates termination, and carries poly(A) mRNA from nucleus to cytoplasm; represses translation initiation by binding eIF4G; required for pre-mRNA splicing; interacts with E3 ubiquitin ligase Bre1p, linking histone ubiquitination to mRNA processing; may have role in telomere maintenance; dissociation from mRNAs promoted by Mtr10p; phosphorylated by Sky1p in cytoplasm; protein abundance increases in response to DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

RAD5

REV2, SNM2, DNA helicase RAD5, L000001559, YLR032W
DNA helicase/Ubiquitin ligase; involved in error-free branch of DNA damage tolerance (DDT) pathway; proposed to promote replication fork regression during postreplication repair by template switching; stimulates synthesis of free and PCNA-bound polyubiquitin chains by Ubc13p-Mms2p; required for error-prone translesion synthesis; forms nuclear foci upon DNA replication stress; associates with native telomeres, cooperates with homologous recombination in senescent cells
Saccharomyces cerevisiae (S288c)

Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Publication

The Yeast SR-Like Protein Npl3 Links Chromatin Modification to mRNA Processing.

Moehle EA, Ryan CJ, Krogan NJ, Kress TL, Guthrie C

Eukaryotic gene expression involves tight coordination between transcription and pre-mRNA splicing; however, factors responsible for this coordination remain incompletely defined. Here, we explored the genetic, functional, and biochemical interactions of a likely coordinator, Npl3, an SR-like protein in Saccharomyces cerevisiae that we recently showed is required for efficient co-transcriptional recruitment of the splicing machinery. We surveyed the NPL3 genetic interaction ... [more]

PLoS Genet. Nov. 01, 2012; 8(11);e1003101 [Pubmed: 23209445]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • at 16 degrees

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RAD5 NPL3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
457071

Curated By

  • BioGRID