BAIT

SBP1

SSB1, SSBR1, L000002628, L000002076, YHL034C
Protein that binds eIF4G and has a role in repression of translation; has an RGG motif; found in cytoplasmic P bodies; binds to mRNAs under glucose starvation stress, most often in the 5' UTR; found associated with small nucleolar RNAs snR10 and snR11; SBP1 has a paralog, RNP1, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

RPN12

NIN1, proteasome regulatory particle lid subunit RPN12, L000001251, YFR052W
Subunit of the 19S regulatory particle of the 26S proteasome lid; synthetically lethal with RPT1, which is an ATPase component of the 19S regulatory particle; physically interacts with Nob1p and Rpn3p; protein abundance increases in response to DNA replication stress
GO Process (1)
GO Function (0)
GO Component (2)
Saccharomyces cerevisiae (S288c)

Affinity Capture-RNA

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and associated RNA species identified by Northern blot, RT-PCR, affinity labeling, sequencing, or microarray analysis.

Publication

Global analysis of yeast mRNPs.

Mitchell SF, Jain S, She M, Parker R

Proteins regulate gene expression by controlling mRNA biogenesis, localization, translation and decay. Identifying the composition, diversity and function of mRNA-protein complexes (mRNPs) is essential to understanding these processes. In a global survey of Saccharomyces cerevisiae mRNA-binding proteins, we identified 120 proteins that cross-link to mRNA, including 66 new mRNA-binding proteins. These include kinases, RNA-modification enzymes, metabolic enzymes and tRNA- and ... [more]

Nat. Struct. Mol. Biol. Dec. 09, 2012; 0(0); [Pubmed: 23222640]

Throughput

  • High Throughput

Additional Notes

  • UV cross-linking followed by immunoprecipitation

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RPN12 SBP1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1348BioGRID
378317

Curated By

  • BioGRID