XPA
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
ATR
Gene Ontology Biological Process
- DNA damage checkpoint [IDA]
- DNA repair [TAS]
- DNA replication [TAS]
- cell cycle [TAS]
- cellular response to DNA damage stimulus [TAS]
- cellular response to UV [IMP]
- cellular response to gamma radiation [IDA]
- double-strand break repair via homologous recombination [IBA]
- multicellular organismal development [TAS]
- negative regulation of DNA replication [IMP]
- peptidyl-serine phosphorylation [IDA]
- positive regulation of DNA damage response, signal transduction by p53 class mediator [IMP]
- protein autophosphorylation [IDA]
- replicative senescence [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
Coordinated regulation of XPA stability by ATR and HERC2 during nucleotide excision repair.
ATR (ATM and Rad3-related) is an essential regulator of the nucleotide excision repair (NER) mechanism. For NER activation, ATR phosphorylates XPA, the rate-limiting factor in the NER pathway. However, the role of XPA phosphorylation at serine 196 by ATR has been elusive. Here we show that ATR-mediated XPA phosphorylation enhances XPA stability by inhibiting HERC2-mediated ubiquitination and subsequent degradation. We ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| ATR XPA | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| XPA ATR | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| ATR XPA | Biochemical Activity Biochemical Activity An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation. | Low | - | BioGRID | 735081 |
Curated By
- BioGRID