SCC2
Gene Ontology Biological Process
- 2-micrometer plasmid partitioning [IC]
- double-strand break repair [IMP]
- establishment of mitotic sister chromatid cohesion [IMP]
- establishment of protein localization to chromatin [IMP]
- mitotic chromosome condensation [IMP]
- protein localization to chromatin [IMP]
- rDNA condensation [IMP]
- replication-born double-strand break repair via sister chromatid exchange [IMP]
- tRNA gene clustering [IMP]
- transcription-dependent tethering of RNA polymerase II gene DNA at nuclear periphery [IMP]
Gene Ontology Cellular Component
IRC15
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Synthetic Lethality of Cohesins with PARPs and Replication Fork Mediators.
Synthetic lethality has been proposed as a way to leverage the genetic differences found in tumor cells to affect their selective killing. Cohesins, which tether sister chromatids together until anaphase onset, are mutated in a variety of tumor types. The elucidation of synthetic lethal interactions with cohesin mutants therefore identifies potential therapeutic targets. We used a cross-species approach to identify ... [more]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- p-value less than 0.05 and a large interaction magnitude (E-C value less than -0.3)
- scc2-4 allele
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SCC2 IRC15 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.5963 | BioGRID | 367781 | |
IRC15 SCC2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.4676 | BioGRID | 2071894 | |
SCC2 IRC15 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.6334 | BioGRID | 1969246 |
Curated By
- BioGRID