TAF1
Gene Ontology Biological Process
Gene Ontology Molecular Function
DIA2
Gene Ontology Biological Process
- SCF-dependent proteasomal ubiquitin-dependent protein catabolic process [IDA, IMP]
- chromatin silencing at silent mating-type cassette [IMP]
- chromatin silencing at telomere [IMP]
- invasive growth in response to glucose limitation [IGI]
- protein ubiquitination [IMP]
- protein ubiquitination involved in ubiquitin-dependent protein catabolic process [IMP]
- regulation of DNA replication [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Saccharomyces cerevisiae Genetics Predicts Candidate Therapeutic Genetic Interactions at the Mammalian Replication Fork.
The concept of synthetic lethality has gained popularity as a rational guide for predicting chemotherapeutic targets based on negative genetic interactions between tumor-specific somatic mutations and a second-site target gene. One hallmark of most cancers that can be exploited by chemotherapies is chromosome instability (CIN). Because chromosome replication, maintenance, and segregation represent conserved and cell-essential processes, they can be modeled ... [more]
Quantitative Score
- 0.003232679 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Additional Notes
- SGA analysis for synthetic lethal interactions between mutations whose human orthologs are found to be mutated in cancers, and the deletion mutant collection, where the interaction probability P < 0.05
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
TAF1 DIA2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1931 | BioGRID | 1986920 |
Curated By
- BioGRID