BAIT
CDC73
L000002792, YLR418C
Component of the Paf1p complex; binds to and modulates the activity of RNA polymerases I and II; required for expression of certain genes, modification of some histones, and telomere maintenance; involved in transcription elongation as demonstrated by the G-less-based run-on (GLRO) assay; protein abundance increases in response to DNA replication stress; human homologue, parafibromin, is a tumour suppressor linked to breast, renal and gastric cancers
GO Process (11)
GO Function (5)
GO Component (3)
Gene Ontology Biological Process
- mRNA 3'-end processing [IMP]
- negative regulation of DNA recombination [IMP]
- positive regulation of histone H3-K36 trimethylation [IMP]
- positive regulation of phosphorylation of RNA polymerase II C-terminal domain serine 2 residues [IMP]
- positive regulation of transcription elongation from RNA polymerase I promoter [IDA]
- positive regulation of transcription elongation from RNA polymerase II promoter [IMP]
- recruitment of 3'-end processing factors to RNA polymerase II holoenzyme complex [IMP]
- regulation of histone H2B conserved C-terminal lysine ubiquitination [IDA]
- regulation of transcription-coupled nucleotide-excision repair [IGI]
- transcription elongation from RNA polymerase I promoter [IMP]
- transcription elongation from RNA polymerase II promoter [IGI]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
APC4
anaphase promoting complex subunit 4, L000004319, YDR118W
Subunit of the Anaphase-Promoting Complex/Cyclosome (APC/C); APC/C is a ubiquitin-protein ligase required for degradation of anaphase inhibitors, including mitotic cyclins, during the metaphase/anaphase transition; component of the platform domain of the APC/C, based on structural analysis; relative distribution to the nucleus increases upon DNA replication stress
GO Process (2)
GO Function (1)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Saccharomyces cerevisiae Genetics Predicts Candidate Therapeutic Genetic Interactions at the Mammalian Replication Fork.
The concept of synthetic lethality has gained popularity as a rational guide for predicting chemotherapeutic targets based on negative genetic interactions between tumor-specific somatic mutations and a second-site target gene. One hallmark of most cancers that can be exploited by chemotherapies is chromosome instability (CIN). Because chromosome replication, maintenance, and segregation represent conserved and cell-essential processes, they can be modeled ... [more]
G3 (Bethesda) Feb. 01, 2013; 3(2);273-82 [Pubmed: 23390603]
Quantitative Score
- 0.011106135 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Additional Notes
- SGA analysis for synthetic lethal interactions between mutations whose human orthologs are found to be mutated in cancers, and the deletion mutant collection, where the interaction probability P < 0.05
Curated By
- BioGRID