CDC73
Gene Ontology Biological Process
- mRNA 3'-end processing [IMP]
- negative regulation of DNA recombination [IMP]
- positive regulation of histone H3-K36 trimethylation [IMP]
- positive regulation of phosphorylation of RNA polymerase II C-terminal domain serine 2 residues [IMP]
- positive regulation of transcription elongation from RNA polymerase I promoter [IDA]
- positive regulation of transcription elongation from RNA polymerase II promoter [IMP]
- recruitment of 3'-end processing factors to RNA polymerase II holoenzyme complex [IMP]
- regulation of histone H2B conserved C-terminal lysine ubiquitination [IDA]
- regulation of transcription-coupled nucleotide-excision repair [IGI]
- transcription elongation from RNA polymerase I promoter [IMP]
- transcription elongation from RNA polymerase II promoter [IGI]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
RPN11
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Saccharomyces cerevisiae Genetics Predicts Candidate Therapeutic Genetic Interactions at the Mammalian Replication Fork.
The concept of synthetic lethality has gained popularity as a rational guide for predicting chemotherapeutic targets based on negative genetic interactions between tumor-specific somatic mutations and a second-site target gene. One hallmark of most cancers that can be exploited by chemotherapies is chromosome instability (CIN). Because chromosome replication, maintenance, and segregation represent conserved and cell-essential processes, they can be modeled ... [more]
Quantitative Score
- 6.74e-05 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Additional Notes
- SGA analysis for synthetic lethal interactions between mutations whose human orthologs are found to be mutated in cancers, and the deletion mutant collection, where the interaction probability P < 0.05
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RPN11 CDC73 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1773 | BioGRID | 377938 | |
RPN11 CDC73 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.157 | BioGRID | 1979975 |
Curated By
- BioGRID