BAIT
SGS1
ATP-dependent DNA helicase SGS1, L000001877, YMR190C
RecQ family nucleolar DNA helicase; role in genome integrity maintenance; regulates chromosome synapsis and meiotic joint molecule/crossover formation; stimulates DNA catenation/decatenation activity of Top3p; potential repressor of a subset of rapamycin responsive genes; rapidly lost in response to rapamycin in Rrd1p-dependent manner; similar to human BLM and WRN proteins implicated in Bloom and Werner syndromes; forms nuclear foci upon DNA replication stress
GO Process (18)
GO Function (1)
GO Component (3)
Gene Ontology Biological Process
- DNA double-strand break processing [IGI]
- DNA duplex unwinding [IDA]
- DNA topological change [IDA]
- DNA unwinding involved in DNA replication [IDA]
- cellular response to DNA damage stimulus [IMP]
- chromosome organization [IMP]
- double-strand break repair via homologous recombination [IGI, IMP]
- gene conversion at mating-type locus, DNA double-strand break processing [IGI]
- intra-S DNA damage checkpoint [IGI, IMP]
- meiotic DNA double-strand break processing [IGI]
- meiotic chromosome segregation [IMP]
- mitotic sister chromatid segregation [IMP]
- negative regulation of meiotic joint molecule formation [IGI]
- regulation of reciprocal meiotic recombination [IGI]
- replicative cell aging [IMP]
- telomere maintenance [IGI]
- telomere maintenance via recombination [IGI, IMP]
- telomeric 3' overhang formation [IGI]
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
PREY
SAH1
adenosylhomocysteinase, L000002989, YER043C
S-adenosyl-L-homocysteine hydrolase; catabolizes S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AdoMet) to an acceptor; regulates cellular lipid homoeostasis by regulating phosphatidylcholine(PC)synthesis and triacylglycerol (TG) levels
GO Process (4)
GO Function (1)
GO Component (1)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Saccharomyces cerevisiae Genetics Predicts Candidate Therapeutic Genetic Interactions at the Mammalian Replication Fork.
The concept of synthetic lethality has gained popularity as a rational guide for predicting chemotherapeutic targets based on negative genetic interactions between tumor-specific somatic mutations and a second-site target gene. One hallmark of most cancers that can be exploited by chemotherapies is chromosome instability (CIN). Because chromosome replication, maintenance, and segregation represent conserved and cell-essential processes, they can be modeled ... [more]
G3 (Bethesda) Feb. 01, 2013; 3(2);273-82 [Pubmed: 23390603]
Quantitative Score
- 0.019855321 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Additional Notes
- SGA analysis for synthetic lethal interactions between mutations whose human orthologs are found to be mutated in cancers, and the deletion mutant collection, where the interaction probability P < 0.05
Curated By
- BioGRID