BAIT

SGS1

ATP-dependent DNA helicase SGS1, L000001877, YMR190C
RecQ family nucleolar DNA helicase; role in genome integrity maintenance; regulates chromosome synapsis and meiotic joint molecule/crossover formation; stimulates DNA catenation/decatenation activity of Top3p; potential repressor of a subset of rapamycin responsive genes; rapidly lost in response to rapamycin in Rrd1p-dependent manner; similar to human BLM and WRN proteins implicated in Bloom and Werner syndromes; forms nuclear foci upon DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

SIS1

type II HSP40 co-chaperone SIS1, L000001898, YNL007C
Type II HSP40 co-chaperone that interacts with the HSP70 protein Ssa1p; shuttles between cytosol and nucleus; mediates delivery of misfolded proteins into the nucleus for degradation; involved in proteasomal degradation of misfolded cytosolic proteins; protein abundance increases in response to DNA replication stress; polyQ aggregates sequester Sis1p and interfere with clearance of misfolded proteins; similar to bacterial DnaJ proteins and mammalian DnaJB1
GO Process (4)
GO Function (1)
GO Component (2)
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Saccharomyces cerevisiae Genetics Predicts Candidate Therapeutic Genetic Interactions at the Mammalian Replication Fork.

van Pel DM, Stirling PC, Minaker SW, Sipahimalani P, Hieter P

The concept of synthetic lethality has gained popularity as a rational guide for predicting chemotherapeutic targets based on negative genetic interactions between tumor-specific somatic mutations and a second-site target gene. One hallmark of most cancers that can be exploited by chemotherapies is chromosome instability (CIN). Because chromosome replication, maintenance, and segregation represent conserved and cell-essential processes, they can be modeled ... [more]

G3 (Bethesda) Feb. 01, 2013; 3(2);273-82 [Pubmed: 23390603]

Quantitative Score

  • 0.010593083 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • SGA analysis for synthetic lethal interactions between mutations whose human orthologs are found to be mutated in cancers, and the deletion mutant collection, where the interaction probability P < 0.05

Curated By

  • BioGRID