BAIT

CIT1

LYS6, citrate (Si)-synthase CIT1, CS1, L000000341, YNR001C
Citrate synthase; catalyzes the condensation of acetyl coenzyme A and oxaloacetate to form citrate; the rate-limiting enzyme of the TCA cycle; nuclear encoded mitochondrial protein; CIT1 has a paralog, CIT2, that arose from the whole genome duplication
GO Process (4)
GO Function (1)
GO Component (1)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

CIT3

citrate (Si)-synthase CIT3, L000002855, YPR001W
Dual specificity mitochondrial citrate and methylcitrate synthase; catalyzes the condensation of acetyl-CoA and oxaloacetate to form citrate and that of propionyl-CoA and oxaloacetate to form 2-methylcitrate
GO Process (2)
GO Function (2)
GO Component (1)

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

Fungicidal Drugs Induce a Common Oxidative-Damage Cellular Death Pathway.

Belenky P, Camacho D, Collins JJ

Amphotericin, miconazole, and ciclopirox are antifungal agents from three different drug classes that can effectively kill planktonic yeast, yet their complete fungicidal mechanisms are not fully understood. Here, we employ a systems biology approach to identify a common oxidative-damage cellular death pathway triggered by these representative fungicides in Candida albicans and Saccharomyces cerevisiae. This mechanism utilizes a signaling cascade involving ... [more]

Cell Rep Feb. 13, 2013; 0(0); [Pubmed: 23416050]

Throughput

  • Low Throughput

Ontology Terms

  • respiratory metabolism (APO:0000102)

Additional Notes

  • decreased mitochondrial respiration, through reduced expression of citrate synthase (CIT genes: CIT1 and CIT3), increases resistance to antifungal treatment

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CIT1 CIT3
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
483397
CIT1 CIT3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
483396
CIT1 CIT3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
502552
CIT1 CIT3
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
348297

Curated By

  • BioGRID