BAIT

SET2

EZL1, histone methyltransferase SET2, KMT3, L000003090, YJL168C
Histone methyltransferase with a role in transcriptional elongation; methylates H3 lysine 36 (H3K36), which suppresses incorporation of acetylated histones and signals for the deacetylation of these histones within transcribed genes; associates with the C-terminal domain(CTD) of Rpo21p; H3K36me3 (trimethylation) requires Spt6p, proline 38 on H3, CTD of Rpo21p, Ctk1p, and C-terminal SRI domain of Ste2p; relocalizes to the cytosol in response to hypoxia
Saccharomyces cerevisiae (S288c)
PREY

SWD3

CPS30, SAF35, YBR175W
Essential subunit of the COMPASS (Set1C) complex; COMPASS methylates histone H3 on lysine 4 and is required in transcriptional silencing near telomeres; WD40 beta propeller superfamily member and ortholog of mammalian WDR5
GO Process (3)
GO Function (1)
GO Component (1)

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II.

Krogan NJ, Kim M, Tong A, Golshani A, Cagney G, Canadien V, Richards DP, Beattie BK, Emili A, Boone C, Shilatifard A, Buratowski S, Greenblatt J

Set2 methylates Lys36 of histone H3. We show here that yeast Set2 copurifies with RNA polymerase II (RNAPII). Chromatin immunoprecipitation analyses demonstrated that Set2 and histone H3 Lys36 methylation are associated with the coding regions of several genes that were tested and correlate with active transcription. Both depend, as well, on the Paf1 elongation factor complex. The C terminus of ... [more]

Mol. Cell. Biol. Jun. 01, 2003; 23(12);4207-18 [Pubmed: 12773564]

Throughput

  • High Throughput|Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • High Throughput: SGA analysis
  • Low Throughput: Interaction confirmed by tetrad analysis.

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SET2 SWD3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
517029
SET2 SWD3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low/High-BioGRID
80099
SET2 SWD3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
450607

Curated By

  • BioGRID