SPT10
Gene Ontology Biological Process
Gene Ontology Molecular Function
SIN3
Gene Ontology Biological Process
- double-strand break repair via nonhomologous end joining [IMP]
- histone deacetylation [IMP]
- negative regulation of chromatin silencing at rDNA [IMP]
- negative regulation of chromatin silencing at silent mating-type cassette [IMP]
- negative regulation of chromatin silencing at telomere [IMP]
- negative regulation of transcription during meiosis [IMP]
- negative regulation of transcription from RNA polymerase I promoter [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase II promoter in response to heat stress [IMP]
- regulation of DNA-dependent DNA replication initiation [IMP]
- regulation of transcription involved in G2/M transition of mitotic cell cycle [IGI]
- transfer RNA gene-mediated silencing [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Cell-Cycle Perturbations Suppress the Slow-Growth Defect of spt10Δ Mutants in Saccharomyces cerevisiae.
Spt10 is a putative acetyltransferase of that directly activates the transcription of histone genes. Deletion of causes a severe slow growth phenotype, showing that Spt10 is critical for normal cell division. To gain insight into the function of Spt10, we identified mutations that impair or improve the growth of null mutants. Mutations that cause lethality in combination with include particular ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SPT10 SIN3 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 1027689 |
Curated By
- BioGRID