PRKACA
Gene Ontology Biological Process
- G2/M transition of mitotic cell cycle [TAS]
- activation of phospholipase C activity [TAS]
- activation of protein kinase A activity [TAS]
- blood coagulation [TAS]
- calcium-mediated signaling using intracellular calcium source [TAS]
- carbohydrate metabolic process [TAS]
- cell communication by electrical coupling involved in cardiac conduction [TAS]
- cellular response to epinephrine stimulus [TAS]
- cellular response to glucagon stimulus [TAS]
- cellular response to glucose stimulus [IDA]
- cytosolic calcium ion homeostasis [TAS]
- energy reserve metabolic process [TAS]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- gluconeogenesis [TAS]
- glucose metabolic process [TAS]
- innate immune response [TAS]
- intracellular signal transduction [TAS]
- mitotic cell cycle [TAS]
- neurotrophin TRK receptor signaling pathway [TAS]
- peptidyl-serine phosphorylation [IDA]
- positive regulation of cell cycle arrest [ISS]
- protein phosphorylation [NAS]
- regulation of cardiac muscle contraction [TAS]
- regulation of cardiac muscle contraction by regulation of the release of sequestered calcium ion [TAS]
- regulation of heart rate [TAS]
- regulation of insulin secretion [TAS]
- regulation of osteoblast differentiation [IDA]
- regulation of proteasomal protein catabolic process [IDA]
- regulation of protein binding [TAS]
- regulation of ryanodine-sensitive calcium-release channel activity [TAS]
- regulation of tight junction assembly [IDA]
- signal transduction [TAS]
- small molecule metabolic process [TAS]
- sperm capacitation [ISS]
- transmembrane transport [TAS]
- triglyceride catabolic process [TAS]
- water transport [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SIK1
Gene Ontology Biological Process
- cardiac muscle cell differentiation [ISS]
- entrainment of circadian clock by photoperiod [ISS]
- intracellular signal transduction [IDA, ISS]
- negative regulation of CREB transcription factor activity [ISS]
- negative regulation of gluconeogenesis [ISS]
- negative regulation of triglyceride biosynthetic process [ISS]
- positive regulation of anoikis [IMP]
- protein autophosphorylation [IDA]
- protein phosphorylation [IDA, ISS]
- regulation of cell differentiation [ISS]
- regulation of mitotic cell cycle [ISS]
- regulation of myotube differentiation [ISS]
- regulation of sodium ion transport [ISS]
Gene Ontology Molecular Function
Biochemical Activity (Phosphorylation)
An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.
Publication
Regulation of SIK1 abundance and stability is critical for myogenesis.
cAMP signaling can both promote and inhibit myogenic differentiation, but little is known about the mechanisms mediating promyogenic effects of cAMP. We previously demonstrated that the cAMP response element-binding protein (CREB) transcriptional target salt-inducible kinase 1 (SIK1) promotes MEF2 activity in myocytes via phosphorylation of class II histone deacetylase proteins (HDACs). However, it was unknown whether SIK1 couples cAMP signaling ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID