APPL1
Gene Ontology Biological Process
- apoptotic process [TAS]
- cell proliferation [IDA]
- insulin receptor signaling pathway [TAS]
- positive regulation of apoptotic process [TAS]
- regulation of apoptotic process [TAS]
- regulation of establishment of protein localization to plasma membrane [IMP]
- regulation of glucose import [IMP]
- signal transduction [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
AR
Gene Ontology Biological Process
- androgen receptor signaling pathway [IDA]
- cell growth [NAS]
- cell proliferation [NAS]
- cell-cell signaling [TAS]
- gene expression [TAS]
- intracellular receptor signaling pathway [IDA]
- negative regulation of extrinsic apoptotic signaling pathway [IDA]
- negative regulation of integrin biosynthetic process [IDA]
- positive regulation of NF-kappaB transcription factor activity [IMP]
- positive regulation of cell proliferation [IDA]
- positive regulation of integrin biosynthetic process [IDA]
- positive regulation of phosphorylation [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP]
- positive regulation of transcription from RNA polymerase III promoter [IDA]
- positive regulation of transcription, DNA-templated [IDA]
- prostate gland development [NAS]
- protein oligomerization [IDA]
- regulation of establishment of protein localization to plasma membrane [IDA]
- sex differentiation [NAS]
- signal transduction [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [IDA]
- transport [TAS]
Gene Ontology Molecular Function- DNA binding [NAS]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II transcription factor binding [IPI]
- androgen binding [NAS]
- androgen receptor activity [IDA, IMP, NAS, TAS]
- beta-catenin binding [IDA, IPI, TAS]
- chromatin binding [IDA]
- enzyme binding [IPI]
- ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IDA]
- protein binding [IPI]
- protein dimerization activity [NAS]
- receptor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- DNA binding [NAS]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II transcription factor binding [IPI]
- androgen binding [NAS]
- androgen receptor activity [IDA, IMP, NAS, TAS]
- beta-catenin binding [IDA, IPI, TAS]
- chromatin binding [IDA]
- enzyme binding [IPI]
- ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IDA]
- protein binding [IPI]
- protein dimerization activity [NAS]
- receptor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
APPL suppresses androgen receptor transactivation via potentiating Akt activity.
APPL may function as an adapter protein to modulate the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Although we have previously proven that the PI3K/Akt pathway can suppress androgen receptor (AR) transactivation, the potential linkage from APPL to the AR remains unclear. Here we demonstrated that APPL could suppress AR-mediated transactivation in a dose-dependent manner in LNCaP and PC-3 cells. This suppressive effect ... [more]
Throughput
- Low Throughput
Additional Notes
- figure 8.
Curated By
- BioGRID