SMT3
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
CDC73
Gene Ontology Biological Process
- mRNA 3'-end processing [IMP]
- negative regulation of DNA recombination [IMP]
- positive regulation of histone H3-K36 trimethylation [IMP]
- positive regulation of phosphorylation of RNA polymerase II C-terminal domain serine 2 residues [IMP]
- positive regulation of transcription elongation from RNA polymerase I promoter [IDA]
- positive regulation of transcription elongation from RNA polymerase II promoter [IMP]
- recruitment of 3'-end processing factors to RNA polymerase II holoenzyme complex [IMP]
- regulation of histone H2B conserved C-terminal lysine ubiquitination [IDA]
- regulation of transcription-coupled nucleotide-excision repair [IGI]
- transcription elongation from RNA polymerase I promoter [IMP]
- transcription elongation from RNA polymerase II promoter [IGI]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
Global analysis of SUMO chain function reveals multiple roles in chromatin regulation.
Like ubiquitin, the small ubiquitin-related modifier (SUMO) proteins can form oligomeric "chains," but the biological functions of these superstructures are not well understood. Here, we created mutant yeast strains unable to synthesize SUMO chains (smt3(allR)) and subjected them to high-content microscopic screening, synthetic genetic array (SGA) analysis, and high-density transcript profiling to perform the first global analysis of SUMO chain ... [more]
Throughput
- High Throughput
Ontology Terms
- colony size (APO:0000063)
Additional Notes
- SGA analysis; decreased colony size; smt3allR allele, in which all nine lysine codons have been mutated to code for arginine; the resulting polypeptide can be conjugated to proteins as a monomer, but does not form SUMO chains.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
CDC73 SMT3 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | 0.0004 | BioGRID | 822041 |
Curated By
- BioGRID