BAIT

ESA1

TAS1, NuA4 histone acetyltransferase complex catalytic subunit ESA1, KAT5, L000003952, YOR244W
Catalytic subunit of the histone acetyltransferase complex (NuA4); acetylates four conserved internal lysines of histone H4 N-terminal tail and can acetylate histone H2A; master regulator of cellular acetylation balance; required for cell cycle progression and transcriptional silencing at the rDNA locus and regulation of autophagy; human ortholog TIP60/KAT5 is implicated in cancer and other diseases
Saccharomyces cerevisiae (S288c)
PREY

EAF7

YNL136W
Subunit of the NuA4 histone acetyltransferase complex; NuA4 acetylates the N-terminal tails of histones H4 and H2A
GO Process (3)
GO Function (0)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Publication

mChIP-KAT-MS, a method to map protein interactions and acetylation sites for lysine acetyltransferases.

Mitchell L, Huard S, Cotrut M, Pourhanifeh-Lemeri R, Steunou AL, Hamza A, Lambert JP, Zhou H, Ning Z, Basu A, Cote J, Figeys DA, Baetz K

Recent global proteomic and genomic studies have determined that lysine acetylation is a highly abundant posttranslational modification. The next challenge is connecting lysine acetyltransferases (KATs) to their cellular targets. We hypothesize that proteins that physically interact with KATs may not only predict the cellular function of the KATs but may be acetylation targets. We have developed a mass spectrometry-based method ... [more]

Proc. Natl. Acad. Sci. U.S.A. Apr. 23, 2013; 110(17);E1641-50 [Pubmed: 23572591]

Throughput

  • High Throughput

Additional Notes

  • identified by mChIP-KAT-MS assay, which consists of three steps: isolation of a lysine acetyltransferase (KAT) and its associated protein network from cells, enrichment of acetylated lysine residues within the network by an in vitro KAT reaction; and identification of the interacting proteins and acetylation sites by LC-MS/MS

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
ESA1 EAF7
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
EAF7 ESA1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
ESA1 EAF7
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Low-BioGRID
-
EAF7 ESA1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Low-BioGRID
-
EAF7 ESA1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Low-BioGRID
-
ESA1 EAF7
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Low-BioGRID
-
ESA1 EAF7
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
EAF7 ESA1
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
ESA1 EAF7
Co-purification
Co-purification

An interaction is inferred from the identification of two or more protein subunits in a purified protein complex, as obtained by classical biochemical fractionation or affinity purification and one or more additional fractionation steps.

Low-BioGRID
-
ESA1 EAF7
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2461BioGRID
416726
ESA1 EAF7
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2975BioGRID
2018018
EAF7 ESA1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low/High-BioGRID
284456
ESA1 EAF7
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low/High-BioGRID
284766
EAF7 ESA1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low/High-BioGRID
284455
ESA1 EAF7
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low/High-BioGRID
284765

Curated By

  • BioGRID