BAIT

CHL1

CTF1, LPA9, MCM12, L000000318, YPL008W
Probable DNA helicase; involved in sister-chromatid cohesion and genome integrity and interstrand cross-link repair; interacts with ECO1 and CTF18; mutants are defective in silencing, rDNA recombination, aging and the heat shock response; FANCJ-like helicase family member; mutations in the human homolog, DDX11/ChLR1, cause Warsaw breakage syndrome
GO Process (3)
GO Function (1)
GO Component (2)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

ELG1

RTT110, S000007438, YOR144C
Subunit of an alternative replication factor C complex; important for DNA replication and genome integrity; suppresses spontaneous DNA damage; involved in homologous recombination-mediated repair and telomere homeostasis; required for PCNA (Pol30p) unloading during DNA replication
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Genetic and physical interactions between the yeast ELG1 gene and orthologs of the Fanconi anemia pathway.

Singh S, Shemesh K, Liefshitz B, Kupiec M

Fanconi anemia (FA) is a human syndrome characterized by genomic instability and increased incidence of cancer. FA is a genetically heterogeneous disease caused by mutations in at least 15 different genes; several of these genes are conserved in the yeast Saccharomyces cerevisiae. Elg1 is also a conserved protein that forms an RFC-like complex, which interacts with SUMOylated PCNA. The mammalian ... [more]

Cell Cycle Apr. 25, 2013; 12(10); [Pubmed: 23624835]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: colony size (APO:0000063)

Additional Notes

  • the double mutant elg1D chl1D spores formed small colonies.In addition to this synthetic loss of fitness, the two mutations displayed synergistic interactions with respect to their sensitivity to MMS and hydroxyurea

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CHL1 ELG1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-12.3745BioGRID
213668
ELG1 CHL1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2705BioGRID
416065
CHL1 ELG1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2705BioGRID
421212
CHL1 ELG1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2635BioGRID
2188633
ELG1 CHL1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3175BioGRID
2184556
ELG1 CHL1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4467BioGRID
2440777
ELG1 CHL1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-BioGRID
3492284
CHL1 ELG1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-BioGRID
3492303
ELG1 CHL1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-20.64BioGRID
2356003
ELG1 CHL1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
455447
ELG1 CHL1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
451466
ELG1 CHL1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
165079
CHL1 ELG1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
111054

Curated By

  • BioGRID