CSNK1D
Gene Ontology Biological Process
- DNA repair [TAS]
- G2/M transition of mitotic cell cycle [TAS]
- circadian regulation of gene expression [ISS]
- endocytosis [IBA]
- mitotic cell cycle [TAS]
- peptidyl-serine phosphorylation [IBA]
- positive regulation of canonical Wnt signaling pathway [IMP]
- positive regulation of proteasomal ubiquitin-dependent protein catabolic process [ISS]
- positive regulation of protein phosphorylation [IMP]
- protein phosphorylation [IDA]
- regulation of cell shape [IBA]
- regulation of circadian rhythm [ISS]
- signal transduction [TAS]
- spindle assembly [IDA]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SMAD4
Gene Ontology Biological Process
- BMP signaling pathway [IDA, TAS]
- SMAD protein complex assembly [IDA]
- SMAD protein signal transduction [IDA]
- gene expression [TAS]
- intracellular signal transduction [IDA]
- negative regulation of cell growth [IDA]
- negative regulation of protein catabolic process [IMP]
- negative regulation of transcription from RNA polymerase II promoter [TAS]
- negative regulation of transcription, DNA-templated [IDA]
- palate development [ISS]
- positive regulation of BMP signaling pathway [IMP]
- positive regulation of SMAD protein import into nucleus [ISS]
- positive regulation of epithelial to mesenchymal transition [ISS]
- positive regulation of pathway-restricted SMAD protein phosphorylation [ISS]
- positive regulation of transcription from RNA polymerase II promoter [IDA, TAS]
- positive regulation of transcription, DNA-templated [IDA]
- positive regulation of transforming growth factor beta receptor signaling pathway [IDA]
- regulation of transforming growth factor beta receptor signaling pathway [IMP]
- regulation of transforming growth factor beta2 production [IMP]
- response to hypoxia [IMP]
- response to transforming growth factor beta [IDA]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
- transforming growth factor beta receptor signaling pathway [IDA, TAS]
Gene Ontology Molecular Function- DNA binding [IDA]
- I-SMAD binding [IPI]
- R-SMAD binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- core promoter proximal region sequence-specific DNA binding [IDA]
- identical protein binding [IPI]
- protein binding [IPI]
- protein binding transcription factor activity [IDA]
- protein homodimerization activity [IPI]
- sequence-specific DNA binding [IDA]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription regulatory region DNA binding [IDA]
- transforming growth factor beta receptor, common-partner cytoplasmic mediator activity [IDA]
- DNA binding [IDA]
- I-SMAD binding [IPI]
- R-SMAD binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- core promoter proximal region sequence-specific DNA binding [IDA]
- identical protein binding [IPI]
- protein binding [IPI]
- protein binding transcription factor activity [IDA]
- protein homodimerization activity [IPI]
- sequence-specific DNA binding [IDA]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription regulatory region DNA binding [IDA]
- transforming growth factor beta receptor, common-partner cytoplasmic mediator activity [IDA]
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
Human four-and-a-half LIM family members suppress tumor cell growth through a TGF-beta-like signaling pathway.
The four-and-a-half LIM (FHL) proteins belong to a family of LIM-only proteins that regulate cell proliferation, differentiation, and apoptosis. The exact functions of each FHL protein in cancer development and progression remain unknown. Here we report that FHL1, FHL2, and FHL3 physically and functionally interact with Smad2, Smad3, and Smad4, important regulators of cancer development and progression, in a TGF-beta-independent ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID