BAIT

SSE1

LPG3, MSI3, adenyl-nucleotide exchange factor SSE1, L000002078, YPL106C
ATPase component of heat shock protein Hsp90 chaperone complex; plays a role in determining prion variants; binds unfolded proteins; member of the heat shock protein 70 (HSP70) family; localized to the cytoplasm; deletion results in spindle elongation in S phase; SSE1 has a paralog, SSE2, that arose from the whole genome duplication
GO Process (2)
GO Function (3)
GO Component (2)

Gene Ontology Biological Process

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

SSE2

adenyl-nucleotide exchange factor SSE2, L000002079, YBR169C
Member of the heat shock protein 70 (HSP70) family; may be involved in protein folding; localized to the cytoplasm; SSE2 has a paralog, SSE1, that arose from the whole genome duplication
GO Process (2)
GO Function (1)
GO Component (1)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Mutational Analysis of Sse1 (Hsp110) Suggests an Integral Role for this Chaperone in Yeast Prion Propagation In Vivo.

Moran C, Kinsella GK, Zhang ZR, Perrett S, Jones GW

The yeast Hsp110 chaperone Sse1 is a conserved protein that is a non-canonical member of the Hsp70 protein super-family. Sse1 influences the cellular response to heat stress and has also been implicated in playing a role in the propagation of prions in yeast. Sse1 can seemingly exert its effects in vivo through direct or indirect actions by influencing the nucleotide ... [more]

G3 (Bethesda) Jun. 24, 2013; 0(0); [Pubmed: 23797105]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SSE2 SSE1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
334045
SSE1 SSE2
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
334046
SSE1 SSE2
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High2BioGRID
3604814
SSE1 SSE2
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
2549026
SSE1 SSE2
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
255445
SSE2 SSE1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3126BioGRID
358779
SSE1 SSE2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1649BioGRID
2191120
SSE2 SSE1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3382BioGRID
2082221
SSE1 SSE2
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
3650778
SSE1 SSE2
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
298288
SSE1 SSE2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
3675288
SSE1 SSE2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
3305930
SSE1 SSE2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
196022
SSE1 SSE2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
164172

Curated By

  • BioGRID