BAIT

MMS21

NSE2, PSO10, SUMO ligase MMS21, L000001125, YEL019C
SUMO ligase and component of the SMC5-SMC6 complex; this complex plays a key role in the removal of X-shaped DNA structures that arise between sister chromatids during DNA replication and repair; required for efficient sister chromatid cohesion; mutants are sensitive to methyl methanesulfonate and show increased spontaneous mutation and mitotic recombination; SUMOylates and inhibits Snf1p function
GO Process (1)
GO Function (2)
GO Component (4)

Gene Ontology Biological Process

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

SET1

YTX1, histone methyltransferase SET1, KMT2, L000003286, YHR119W
Histone methyltransferase, subunit of the COMPASS (Set1C) complex; COMPASS methylates histone H3K4; Set1p-dependent H3K4 trimethylation recruits Nrd1p, allowing efficient termination of snoRNAs and cryptic unstable transcripts (CUTs) by Nrd1p-Nab3p-Sen1p pathway; modulates histone acetylation levels in promoter proximal regions to ensure efficient Nrd1p-dependent termination; required in transcriptional silencing near telomeres and at silent mating type loci; has a SET domain
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

The functional role of SUMO E3 ligase Mms21p in the maintenance of subtelomeric silencing in budding yeast.

Wan Y, Zuo X, Danziger SA

In Saccharomyces cerevisiae, subtelomeric silencing is involved in the propagation of Silent Information Regulator (SIR) proteins toward euchromatin. Numerous mechanisms are involved in antagonizing the local spread of Sir-dependent silent chromatin into neighboring euchromatin. Here, we identified a novel role for sumoylation E3 ligase Mms21 in the maintenance of subtelomeric silencing. We found that disruption of E3 ligase activity of ... [more]

Biochem. Biophys. Res. Commun. Jul. 31, 2013; 0(0); [Pubmed: 23911609]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)
  • phenotype: temperature sensitive growth (APO:0000092)

Curated By

  • BioGRID