ARV1
Gene Ontology Biological Process
Gene Ontology Cellular Component
GET3
Gene Ontology Biological Process
- ATP-independent chaperone mediated protein folding [IDA]
- pheromone-dependent signal transduction involved in conjugation with cellular fusion [IMP]
- posttranslational protein targeting to membrane [IDA]
- protein insertion into ER membrane [IMP]
- response to heat [IMP]
- response to metal ion [IMP]
- retrograde vesicle-mediated transport, Golgi to ER [IDA, IGI, IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
A Lipid E-MAP Identifies Ubx2 as a Critical Regulator of Lipid Saturation and Lipid Bilayer Stress.
Biological membranes are complex, and the mechanisms underlying their homeostasis are incompletely understood. Here, we present a quantitative genetic interaction map (E-MAP) focused on various aspects of lipid biology, including lipid metabolism, sorting, and trafficking. This E-MAP contains ∼250,000 negative and positive genetic interaction scores and identifies a molecular crosstalk of protein quality control pathways with lipid bilayer homeostasis. Ubx2p, ... [more]
Quantitative Score
- -12.347405 [S score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.5 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
ARV1 GET3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.2207 | BioGRID | 2152828 | |
GET3 ARV1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.4344 | BioGRID | 2089954 | |
ARV1 GET3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -5.7175 | BioGRID | 579502 | |
ARV1 GET3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | - | BioGRID | 206857 | |
GET3 ARV1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -4.8984 | BioGRID | 206823 |
Curated By
- BioGRID