BAIT
RIM101
RIM1, alkaline-responsive transcritional regulator RIM101, L000002818, YHL027W
Cys2His2 zinc-finger transcriptional repressor; involved in alkaline responsive gene repression as part of adaptation to alkaline conditions; involved in cell wall assembly; required for alkaline pH-stimulated haploid invasive growth and sporulation; activated by alkaline-dependent proteolytic processing which results in removal of the C-terminal tail; similar to A. nidulans PacC
GO Process (8)
GO Function (2)
GO Component (1)
Gene Ontology Biological Process
- ascospore formation [IMP]
- barrier septum assembly [IGI]
- cellular response to alkaline pH [IMP]
- cellular response to anoxia [IMP]
- fungal-type cell wall biogenesis [IGI, IMP]
- meiotic nuclear division [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
PREY
SHP1
UBX1, protein phosphatase regulator SHP1, L000002746, YBL058W
UBX (ubiquitin regulatory X) domain-containing protein; regulates Glc7p phosphatase activity; shp1 mutants are impaired in growth and mitotic progression; functions in growth and mitotic progression require Cdc48p binding; mitotic phenotype is caused by reduced Glc7p activity; interacts with ubiquitylated proteins, required for degradation of a ubiquitylated model substrate
GO Process (7)
GO Function (1)
GO Component (2)
Gene Ontology Biological Process
- ER-associated ubiquitin-dependent protein catabolic process [IMP]
- ascospore formation [IMP]
- autophagic vacuole assembly [IMP]
- glycogen metabolic process [IMP]
- piecemeal microautophagy of nucleus [IMP]
- proteasome-mediated ubiquitin-dependent protein catabolic process [IMP]
- sister chromatid biorientation [IMP]
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
A Lipid E-MAP Identifies Ubx2 as a Critical Regulator of Lipid Saturation and Lipid Bilayer Stress.
Biological membranes are complex, and the mechanisms underlying their homeostasis are incompletely understood. Here, we present a quantitative genetic interaction map (E-MAP) focused on various aspects of lipid biology, including lipid metabolism, sorting, and trafficking. This E-MAP contains ∼250,000 negative and positive genetic interaction scores and identifies a molecular crosstalk of protein quality control pathways with lipid bilayer homeostasis. Ubx2p, ... [more]
Mol. Cell Aug. 22, 2013; 51(4);519-30 [Pubmed: 23891562]
Quantitative Score
- -10.140051 [S score]
Throughput
- High Throughput
Ontology Terms
- colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.5 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).
Curated By
- BioGRID