BAIT
PHO88
L000003995, YBR106W
Probable membrane protein; involved in phosphate transport; role in the maturation of secretory proteins; pho88 pho86 double null mutant exhibits enhanced synthesis of repressible acid phosphatase at high inorganic phosphate concentrations
GO Process (2)
GO Function (0)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
PCT1
BSR2, CCT1, choline-phosphate cytidylyltransferase, L000000240, YGR202C
Cholinephosphate cytidylyltransferase; a rate-determining enzyme of the CDP-choline pathway for phosphatidylcholine synthesis, inhibited by Sec14p, activated upon lipid-binding; contains an element within the regulatory domain involved in both silencing and activation of enzymatic activity
GO Process (2)
GO Function (1)
GO Component (3)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
A Lipid E-MAP Identifies Ubx2 as a Critical Regulator of Lipid Saturation and Lipid Bilayer Stress.
Biological membranes are complex, and the mechanisms underlying their homeostasis are incompletely understood. Here, we present a quantitative genetic interaction map (E-MAP) focused on various aspects of lipid biology, including lipid metabolism, sorting, and trafficking. This E-MAP contains ∼250,000 negative and positive genetic interaction scores and identifies a molecular crosstalk of protein quality control pathways with lipid bilayer homeostasis. Ubx2p, ... [more]
Mol. Cell Aug. 22, 2013; 51(4);519-30 [Pubmed: 23891562]
Quantitative Score
- -3.692161 [S score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.5 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).
Curated By
- BioGRID