SRPK2
Gene Ontology Biological Process
- RNA splicing [IDA]
- angiogenesis [ISS]
- innate immune response [IC]
- intracellular signal transduction [IDA]
- negative regulation of viral genome replication [IDA]
- nuclear speck organization [ISS]
- positive regulation of cell cycle [ISS]
- positive regulation of cell proliferation [IDA]
- positive regulation of gene expression [ISS]
- positive regulation of neuron apoptotic process [ISS]
- positive regulation of viral genome replication [IDA]
- protein phosphorylation [IDA]
- regulation of mRNA splicing, via spliceosome [TAS]
- spliceosomal complex assembly [IDA]
Gene Ontology Molecular Function
ABL1
Gene Ontology Biological Process
- DNA damage induced protein phosphorylation [IDA]
- Fc-gamma receptor signaling pathway involved in phagocytosis [TAS]
- actin cytoskeleton organization [ISS]
- axon guidance [TAS]
- blood coagulation [TAS]
- cell cycle arrest [TAS]
- cell differentiation [IBA]
- cell migration [IBA]
- cellular protein modification process [NAS]
- cellular response to DNA damage stimulus [IDA]
- cellular response to dopamine [TAS]
- cellular response to oxidative stress [TAS]
- epidermal growth factor receptor signaling pathway [IBA]
- innate immune response [IBA, TAS]
- intrinsic apoptotic signaling pathway in response to DNA damage [TAS]
- mismatch repair [TAS]
- mitochondrial depolarization [TAS]
- mitotic nuclear division [TAS]
- muscle cell differentiation [TAS]
- negative regulation of phospholipase C activity [IMP]
- negative regulation of protein serine/threonine kinase activity [IDA]
- negative regulation of ubiquitin-protein transferase activity [IDA, TAS]
- peptidyl-tyrosine autophosphorylation [IBA]
- peptidyl-tyrosine phosphorylation [IDA, TAS]
- platelet-derived growth factor receptor signaling pathway [IBA]
- positive regulation of apoptotic process [IDA]
- positive regulation of cytosolic calcium ion concentration [IMP]
- positive regulation of muscle cell differentiation [TAS]
- positive regulation of oxidoreductase activity [IDA]
- positive regulation of peptidyl-tyrosine phosphorylation [IDA]
- regulation of actin cytoskeleton reorganization [TAS]
- regulation of autophagy [TAS]
- regulation of cell adhesion [TAS]
- regulation of cell motility [TAS]
- regulation of cell proliferation [IBA]
- regulation of endocytosis [TAS]
- regulation of response to DNA damage stimulus [IDA]
- regulation of transcription, DNA-templated [TAS]
- response to oxidative stress [IGI]
- signal transduction in response to DNA damage [IDA]
Gene Ontology Molecular Function- ATP binding [IDA]
- DNA binding [NAS]
- SH3 domain binding [IPI]
- actin monomer binding [TAS]
- magnesium ion binding [IDA]
- manganese ion binding [IDA]
- mitogen-activated protein kinase binding [IPI]
- nicotinate-nucleotide adenylyltransferase activity [TAS]
- non-membrane spanning protein tyrosine kinase activity [IDA]
- proline-rich region binding [IDA, IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein kinase activity [IDA]
- protein tyrosine kinase activity [IDA]
- receptor binding [IBA]
- syntaxin binding [IPI]
- ATP binding [IDA]
- DNA binding [NAS]
- SH3 domain binding [IPI]
- actin monomer binding [TAS]
- magnesium ion binding [IDA]
- manganese ion binding [IDA]
- mitogen-activated protein kinase binding [IPI]
- nicotinate-nucleotide adenylyltransferase activity [TAS]
- non-membrane spanning protein tyrosine kinase activity [IDA]
- proline-rich region binding [IDA, IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein kinase activity [IDA]
- protein tyrosine kinase activity [IDA]
- receptor binding [IBA]
- syntaxin binding [IPI]
Gene Ontology Cellular Component
Biochemical Activity (Phosphorylation)
An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.
Publication
The protein interaction landscape of the human CMGC kinase group.
Cellular information processing via reversible protein phosphorylation requires tight control of the localization, activity, and substrate specificity of protein kinases, which to a large extent is accomplished by complex formation with other proteins. Despite their critical role in cellular regulation and pathogenesis, protein interaction information is available for only a subset of the 518 human protein kinases. Here we present ... [more]
Throughput
- High Throughput
Additional Notes
- Substrate (Hit) was protein microarray; all hits had Z-score greater than 0.25
Curated By
- BioGRID