BAIT

RNH203

Rnh2C, YLR154C
Ribonuclease H2 subunit; required for RNase H2 activity; role in ribonucleotide excision repair; related to human AGS3 that causes Aicardi-Goutieres syndrome
GO Process (2)
GO Function (1)
GO Component (3)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

ASF1

CIA1, nucleosome assembly factor ASF1, L000000126, YJL115W
Nucleosome assembly factor; involved in chromatin assembly and disassembly, anti-silencing protein that causes derepression of silent loci when overexpressed; plays a role in regulating Ty1 transposition; relocalizes to the cytosol in response to hypoxia
Saccharomyces cerevisiae (S288c)

Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

A Saccharomyces cerevisiae Ribonuclease H2 interaction network functions to suppress genome instability.

Allen-Soltero S, Martinez SL, Putnam CD, Kolodner RD

Errors during DNA replication are one likely cause of gross chromosomal rearrangements (GCRs). Here we analyze the role of RNase H2, which functions to process Okazaki fragments, degrade transcription intermediates and repair misincorporated ribonucleotides, in preventing genome instability. The results demonstrate that rnh203 mutations result in a weak mutator phenotype and cause growth defects and synergistic increases in GCR rates ... [more]

Mol. Cell. Biol. Feb. 18, 2014; 0(0); [Pubmed: 24550002]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: chromosome/plasmid maintenance (APO:0000143)

Additional Notes

  • increased accumulation of gross chromosomal rearrangements was observed in the double mutants

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RNH203 ASF1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2331BioGRID
2151317
RNH203 ASF1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
933020
ASF1 RNH203
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
933029

Curated By

  • BioGRID