BAIT

RNH203

Rnh2C, YLR154C
Ribonuclease H2 subunit; required for RNase H2 activity; role in ribonucleotide excision repair; related to human AGS3 that causes Aicardi-Goutieres syndrome
GO Process (2)
GO Function (1)
GO Component (3)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

ESC2

L000004423, YDR363W
Sumo-like domain protein; prevents accumulation of toxic intermediates during replication-associated recombinational repair; roles in silencing, lifespan, chromatid cohesion and the intra-S-phase DNA damage checkpoint; RENi family member
Saccharomyces cerevisiae (S288c)

Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

A Saccharomyces cerevisiae Ribonuclease H2 interaction network functions to suppress genome instability.

Allen-Soltero S, Martinez SL, Putnam CD, Kolodner RD

Errors during DNA replication are one likely cause of gross chromosomal rearrangements (GCRs). Here we analyze the role of RNase H2, which functions to process Okazaki fragments, degrade transcription intermediates and repair misincorporated ribonucleotides, in preventing genome instability. The results demonstrate that rnh203 mutations result in a weak mutator phenotype and cause growth defects and synergistic increases in GCR rates ... [more]

Mol. Cell. Biol. Feb. 18, 2014; 0(0); [Pubmed: 24550002]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: chromosome/plasmid maintenance (APO:0000143)

Additional Notes

  • increased accumulation of gross chromosomal rearrangements was observed in the double mutants

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
ESC2 RNH203
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2036BioGRID
369977
RNH203 ESC2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2021BioGRID
2151313
ESC2 RNH203
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1831BioGRID
2100438
ESC2 RNH203
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3021BioGRID
2429359
ESC2 RNH203
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
933031
RNH203 ESC2
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
933044
ESC2 RNH203
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
335644
ESC2 RNH203
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
451663

Curated By

  • BioGRID