RPA2
Gene Ontology Biological Process
- DNA recombinase assembly [TAS]
- DNA repair [TAS]
- DNA replication [IDA, IMP, TAS]
- DNA strand elongation involved in DNA replication [TAS]
- G1/S transition of mitotic cell cycle [TAS]
- base-excision repair [IDA]
- double-strand break repair [TAS]
- double-strand break repair via homologous recombination [IMP, TAS]
- mismatch repair [IMP]
- mitotic G1 DNA damage checkpoint [IMP]
- mitotic cell cycle [TAS]
- nucleotide-excision repair [IMP, TAS]
- nucleotide-excision repair, DNA damage removal [TAS]
- nucleotide-excision repair, DNA gap filling [TAS]
- regulation of DNA damage checkpoint [IMP]
- regulation of double-strand break repair via homologous recombination [IMP]
- telomere maintenance [IMP, TAS]
- telomere maintenance via recombination [TAS]
- telomere maintenance via semi-conservative replication [TAS]
- transcription-coupled nucleotide-excision repair [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
NPM1
Gene Ontology Biological Process
- CENP-A containing nucleosome assembly [TAS]
- DNA repair [IDA]
- cell aging [IMP, ISS]
- centrosome cycle [IMP, ISS]
- intracellular protein transport [TAS]
- negative regulation of apoptotic process [IDA, NAS]
- negative regulation of cell proliferation [IMP, ISS]
- negative regulation of centrosome duplication [IMP]
- negative regulation of protein kinase activity by regulation of protein phosphorylation [IDA]
- nucleocytoplasmic transport [IDA, TAS]
- nucleosome assembly [IDA, TAS]
- positive regulation of NF-kappaB transcription factor activity [IMP]
- positive regulation of translation [IDA]
- protein localization [IDA]
- protein oligomerization [IDA]
- regulation of centriole replication [IMP]
- regulation of eIF2 alpha phosphorylation by dsRNA [IDA]
- regulation of endodeoxyribonuclease activity [IDA]
- regulation of endoribonuclease activity [IDA]
- response to stress [IMP]
- ribosome assembly [TAS]
- signal transduction [NAS]
- viral process [TAS]
Gene Ontology Molecular Function- NF-kappaB binding [IDA, ISS]
- RNA binding [IDA]
- Tat protein binding [IDA]
- histone binding [IDA]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein heterodimerization activity [IMP]
- protein homodimerization activity [IDA]
- protein kinase binding [IPI]
- protein kinase inhibitor activity [IDA]
- ribosomal large subunit binding [IDA]
- ribosomal small subunit binding [IDA]
- transcription coactivator activity [IDA]
- unfolded protein binding [IDA, ISS]
- NF-kappaB binding [IDA, ISS]
- RNA binding [IDA]
- Tat protein binding [IDA]
- histone binding [IDA]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein heterodimerization activity [IMP]
- protein homodimerization activity [IDA]
- protein kinase binding [IPI]
- protein kinase inhibitor activity [IDA]
- ribosomal large subunit binding [IDA]
- ribosomal small subunit binding [IDA]
- transcription coactivator activity [IDA]
- unfolded protein binding [IDA, ISS]
Gene Ontology Cellular Component
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry.
PRP19 is a ubiquitin ligase involved in pre-mRNA splicing and the DNA damage response (DDR). Although the role for PRP19 in splicing is well characterized, its role in the DDR remains elusive. Through a proteomic screen for proteins that interact with RPA-coated single-stranded DNA (RPA-ssDNA), we identified PRP19 as a sensor of DNA damage. PRP19 directly binds RPA and localizes ... [more]
Throughput
- High Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RPA2 NPM1 | Proximity Label-MS Proximity Label-MS An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods. | High | - | BioGRID | 3633592 |
Curated By
- BioGRID