BAIT

RIF1

DNA-binding protein RIF1, L000001639, YBR275C
Protein that binds to the Rap1p C-terminus; acts synergistically with Rif2p to help control telomere length and establish telomeric silencing; contributes to resection of DNA double strand breaks (DSBs); deletion results in telomere elongation
GO Process (4)
GO Function (1)
GO Component (2)
Saccharomyces cerevisiae (S288c)
PREY

MRE11

NGS1, RAD58, XRS4, MRX complex nuclease subunit, L000004732, L000001149, L000004275, YMR224C
Nuclease subunit of the MRX complex with Rad50p and Xrs2p; complex functions in repair of DNA double-strand breaks and in telomere stability; Mre11p associates with Ser/Thr-rich ORFs in premeiotic phase; nuclease activity required for MRX function; widely conserved; forms nuclear foci upon DNA replication stress
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Saccharomyces cerevisiae Rif1 cooperates with MRX-Sae2 in promoting DNA-end resection.

Martina M, Bonetti D, Villa M, Lucchini G, Longhese MP

Diverse roles in DNA metabolism have been envisaged for budding yeast and mammalian Rif1. In particular, yeast Rif1 is involved in telomere homeostasis, while its mammalian counterpart participates in the cellular response to DNA double-strand breaks (DSBs). Here, we show that Saccharomyces cerevisiae Rif1 supports cell survival to DNA lesions in the absence of MRX or Sae2. Furthermore, it contributes ... [more]

EMBO Rep. Apr. 01, 2014; 0(0); [Pubmed: 24692507]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: spore germination (APO:0000042)
  • phenotype: resistance to chemicals (APO:0000087)

Additional Notes

  • rif1 mre1 double mutants form small colonies post germination
  • rif1 mre11-H125N double mutant has decreased survival in phleomycin and MMS

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RIF1 MRE11
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2737BioGRID
2084385
MRE11 RIF1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-BioGRID
3492389
RIF1 MRE11
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
2296849
MRE11 RIF1
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
3387838
RIF1 MRE11
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
2451734
MRE11 RIF1
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
2549532

Curated By

  • BioGRID