TRAF6
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- I-kappaB kinase/NF-kappaB signaling [TAS]
- JNK cascade [TAS]
- MyD88-dependent toll-like receptor signaling pathway [TAS]
- MyD88-independent toll-like receptor signaling pathway [TAS]
- T cell receptor signaling pathway [IMP, TAS]
- TRIF-dependent toll-like receptor signaling pathway [TAS]
- activation of MAPK activity [TAS]
- activation of NF-kappaB-inducing kinase activity [IMP]
- activation of protein kinase activity [IDA]
- apoptotic signaling pathway [TAS]
- cellular response to lipopolysaccharide [IDA]
- innate immune response [TAS]
- membrane protein intracellular domain proteolysis [TAS]
- negative regulation of apoptotic process [TAS]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- negative regulation of transcription, DNA-templated [IMP]
- neurotrophin TRK receptor signaling pathway [TAS]
- nucleotide-binding domain, leucine rich repeat containing receptor signaling pathway [TAS]
- nucleotide-binding oligomerization domain containing signaling pathway [TAS]
- positive regulation of I-kappaB kinase/NF-kappaB signaling [IDA, TAS]
- positive regulation of JUN kinase activity [IDA, NAS]
- positive regulation of NF-kappaB transcription factor activity [IDA, IMP, TAS]
- positive regulation of T cell activation [IC]
- positive regulation of T cell cytokine production [IMP]
- positive regulation of apoptotic process [TAS]
- positive regulation of interleukin-2 production [IMP]
- positive regulation of osteoclast differentiation [IDA]
- positive regulation of protein ubiquitination [NAS]
- positive regulation of sequence-specific DNA binding transcription factor activity [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA, NAS]
- positive regulation of transcription regulatory region DNA binding [IDA]
- protein K63-linked ubiquitination [IDA, IGI]
- protein autoubiquitination [IDA, TAS]
- protein polyubiquitination [IDA]
- response to interleukin-1 [IDA]
- stress-activated MAPK cascade [TAS]
- toll-like receptor 10 signaling pathway [TAS]
- toll-like receptor 2 signaling pathway [TAS]
- toll-like receptor 3 signaling pathway [TAS]
- toll-like receptor 4 signaling pathway [TAS]
- toll-like receptor 5 signaling pathway [TAS]
- toll-like receptor 9 signaling pathway [TAS]
- toll-like receptor TLR1:TLR2 signaling pathway [TAS]
- toll-like receptor TLR6:TLR2 signaling pathway [TAS]
- toll-like receptor signaling pathway [TAS]
Gene Ontology Molecular Function- histone deacetylase binding [IPI]
- mitogen-activated protein kinase kinase kinase binding [IPI]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- protein kinase B binding [IPI]
- protein kinase binding [IPI]
- thioesterase binding [IPI]
- tumor necrosis factor receptor binding [IPI]
- ubiquitin conjugating enzyme binding [IDA]
- ubiquitin protein ligase binding [IPI]
- ubiquitin-protein transferase activity [EXP, IDA, TAS]
- histone deacetylase binding [IPI]
- mitogen-activated protein kinase kinase kinase binding [IPI]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- protein kinase B binding [IPI]
- protein kinase binding [IPI]
- thioesterase binding [IPI]
- tumor necrosis factor receptor binding [IPI]
- ubiquitin conjugating enzyme binding [IDA]
- ubiquitin protein ligase binding [IPI]
- ubiquitin-protein transferase activity [EXP, IDA, TAS]
Gene Ontology Cellular Component
BIRC3
Gene Ontology Biological Process
- MyD88-independent toll-like receptor signaling pathway [TAS]
- NIK/NF-kappaB signaling [TAS]
- TRIF-dependent toll-like receptor signaling pathway [TAS]
- cell surface receptor signaling pathway [TAS]
- inhibition of cysteine-type endopeptidase activity involved in apoptotic process [IBA]
- innate immune response [TAS]
- negative regulation of apoptotic process [TAS]
- negative regulation of necroptotic process [IBA]
- positive regulation of I-kappaB kinase/NF-kappaB signaling [TAS]
- positive regulation of protein ubiquitination [IDA]
- protein ubiquitination [IDA]
- regulation of RIG-I signaling pathway [TAS]
- regulation of apoptotic process [IMP]
- regulation of cysteine-type endopeptidase activity [TAS]
- regulation of inflammatory response [TAS]
- regulation of innate immune response [TAS]
- regulation of necroptotic process [IMP]
- regulation of nucleotide-binding oligomerization domain containing signaling pathway [TAS]
- regulation of toll-like receptor signaling pathway [TAS]
- spindle assembly involved in mitosis [IBA]
- toll-like receptor 3 signaling pathway [TAS]
- toll-like receptor 4 signaling pathway [TAS]
- toll-like receptor signaling pathway [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
K63-linked polyubiquitination of transcription factor IRF1 is essential for IL-1-induced production of chemokines CXCL10 and CCL5.
Although interleukin 1 (IL-1) induces expression of the transcription factor IRF1 (interferon-regulatory factor 1), the roles of IRF1 in immune and inflammatory responses and mechanisms of its activation remain elusive. Here we found that IRF1 was essential for IL-1-induced expression of the chemokines CXCL10 and CCL5, which recruit mononuclear cells into sites of sterile inflammation. Newly synthesized IRF1 acquired Lys63 ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| BIRC3 TRAF6 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
| BIRC3 TRAF6 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| TRAF6 BIRC3 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| TRAF6 BIRC3 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - |
Curated By
- BioGRID