PPARG
Gene Ontology Biological Process
- G-protein coupled receptor signaling pathway [TAS]
- activation of cysteine-type endopeptidase activity involved in apoptotic process [IDA]
- cell fate commitment [ISS]
- cell maturation [IDA]
- cellular response to insulin stimulus [IMP]
- epithelial cell differentiation [ISS]
- gene expression [TAS]
- glucose homeostasis [IMP]
- innate immune response [TAS]
- lipid homeostasis [TAS]
- lipid metabolic process [TAS]
- lipoprotein transport [IDA]
- long-chain fatty acid transport [ISS]
- low-density lipoprotein particle receptor biosynthetic process [IDA]
- monocyte differentiation [IDA]
- negative regulation of cholesterol storage [IDA]
- negative regulation of interferon-gamma-mediated signaling pathway [IMP]
- negative regulation of macrophage derived foam cell differentiation [IC, IDA]
- negative regulation of receptor biosynthetic process [IDA]
- negative regulation of sequestering of triglyceride [IDA]
- negative regulation of smooth muscle cell proliferation [IDA]
- negative regulation of transcription from RNA polymerase II promoter [IDA, ISS]
- negative regulation of transcription, DNA-templated [ISS]
- peroxisome proliferator activated receptor signaling pathway [IMP]
- placenta development [ISS]
- positive regulation of fat cell differentiation [ISS]
- positive regulation of sequence-specific DNA binding transcription factor activity [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP]
- positive regulation of transcription, DNA-templated [ISS]
- regulation of blood pressure [IMP]
- regulation of cholesterol transporter activity [IC]
- regulation of transcription involved in cell fate commitment [ISS]
- response to lipid [ISS]
- response to low-density lipoprotein particle [IDA]
- response to nutrient [TAS]
- response to retinoic acid [IDA]
- signal transduction [IDA]
- transcription initiation from RNA polymerase II promoter [TAS]
- white fat cell differentiation [ISS, TAS]
Gene Ontology Molecular Function- DNA binding [IDA, ISS]
- activating transcription factor binding [IDA]
- arachidonic acid binding [ISS]
- chromatin binding [ISS]
- drug binding [IDA]
- enzyme binding [IPI]
- ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IDA]
- ligand-dependent nuclear receptor transcription coactivator activity [IDA]
- prostaglandin receptor activity [TAS]
- protein binding [IPI]
- retinoid X receptor binding [IDA]
- sequence-specific DNA binding [IDA]
- sequence-specific DNA binding transcription factor activity [IDA, ISS]
- transcription regulatory region DNA binding [IDA, ISS]
- DNA binding [IDA, ISS]
- activating transcription factor binding [IDA]
- arachidonic acid binding [ISS]
- chromatin binding [ISS]
- drug binding [IDA]
- enzyme binding [IPI]
- ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IDA]
- ligand-dependent nuclear receptor transcription coactivator activity [IDA]
- prostaglandin receptor activity [TAS]
- protein binding [IPI]
- retinoid X receptor binding [IDA]
- sequence-specific DNA binding [IDA]
- sequence-specific DNA binding transcription factor activity [IDA, ISS]
- transcription regulatory region DNA binding [IDA, ISS]
Gene Ontology Cellular Component
MAP2K1
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- MAPK cascade [TAS]
- MyD88-dependent toll-like receptor signaling pathway [TAS]
- MyD88-independent toll-like receptor signaling pathway [TAS]
- Ras protein signal transduction [TAS]
- TRIF-dependent toll-like receptor signaling pathway [TAS]
- activation of MAPK activity [IDA, TAS]
- activation of MAPKK activity [TAS]
- axon guidance [TAS]
- cell cycle arrest [IMP]
- cellular component movement [TAS]
- cellular senescence [IMP]
- chemotaxis [TAS]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- innate immune response [TAS]
- insulin receptor signaling pathway [TAS]
- negative regulation of cell proliferation [IDA]
- neurotrophin TRK receptor signaling pathway [TAS]
- positive regulation of gene expression [IMP]
- positive regulation of protein serine/threonine kinase activity [IDA]
- regulation of Golgi inheritance [TAS]
- regulation of early endosome to late endosome transport [TAS]
- regulation of stress-activated MAPK cascade [TAS]
- signal transduction [TAS]
- small GTPase mediated signal transduction [TAS]
- stress-activated MAPK cascade [TAS]
- toll-like receptor 10 signaling pathway [TAS]
- toll-like receptor 2 signaling pathway [TAS]
- toll-like receptor 3 signaling pathway [TAS]
- toll-like receptor 4 signaling pathway [TAS]
- toll-like receptor 5 signaling pathway [TAS]
- toll-like receptor 9 signaling pathway [TAS]
- toll-like receptor TLR1:TLR2 signaling pathway [TAS]
- toll-like receptor TLR6:TLR2 signaling pathway [TAS]
- toll-like receptor signaling pathway [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
The Ras inhibitors caveolin-1 and docking protein 1 activate peroxisome proliferator-activated receptor γ through spatial relocalization at helix 7 of its ligand-binding domain.
Peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that promotes differentiation and cell survival in the stomach. PPARγ upregulates and interacts with caveolin-1 (Cav1), a scaffold protein of Ras/mitogen-activated protein kinases (MAPKs). The cytoplasmic-to-nuclear localization of PPARγ is altered in gastric cancer (GC) patients, suggesting a so-far-unknown role for Cav1 in spatial regulation of PPARγ signaling. We show here ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| PPARG MAP2K1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| MAP2K1 PPARG | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| PPARG MAP2K1 | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | Low | - | BioGRID | - | |
| PPARG MAP2K1 | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | - |
Curated By
- BioGRID