CCNB1
Gene Ontology Biological Process
- G1/S transition of mitotic cell cycle [TAS]
- G2/M transition of mitotic cell cycle [TAS]
- anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process [TAS]
- mitotic cell cycle [TAS]
- mitotic metaphase plate congression [IMP]
- mitotic nuclear envelope disassembly [TAS]
- mitotic spindle stabilization [IMP]
- positive regulation of attachment of spindle microtubules to kinetochore [IMP]
- positive regulation of mitotic cell cycle [IMP]
- positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- regulation of cell cycle [TAS]
- regulation of mitotic cell cycle spindle assembly checkpoint [IMP]
- regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
RELA
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- MyD88-dependent toll-like receptor signaling pathway [TAS]
- MyD88-independent toll-like receptor signaling pathway [TAS]
- T cell receptor signaling pathway [TAS]
- TRIF-dependent toll-like receptor signaling pathway [TAS]
- cellular defense response [NAS]
- cellular response to hydrogen peroxide [IDA]
- cellular response to interleukin-1 [IDA]
- cellular response to interleukin-6 [IMP]
- cellular response to nicotine [IMP]
- cellular response to peptide hormone stimulus [IMP]
- cellular response to tumor necrosis factor [IDA]
- cytokine-mediated signaling pathway [IDA]
- defense response to virus [NAS]
- inflammatory response [IDA]
- innate immune response [TAS]
- membrane protein intracellular domain proteolysis [TAS]
- negative regulation of apoptotic process [IDA, TAS]
- negative regulation of extrinsic apoptotic signaling pathway [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- negative regulation of transcription, DNA-templated [IDA]
- neurotrophin TRK receptor signaling pathway [TAS]
- nucleotide-binding oligomerization domain containing 2 signaling pathway [IDA]
- positive regulation of I-kappaB kinase/NF-kappaB signaling [IEP]
- positive regulation of NF-kappaB transcription factor activity [IDA, TAS]
- positive regulation of cell proliferation [IDA]
- positive regulation of miRNA metabolic process [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP]
- positive regulation of transcription, DNA-templated [IDA]
- positive regulation of type I interferon production [TAS]
- regulation of inflammatory response [ISS]
- response to UV-B [IDA]
- response to interleukin-1 [IGI]
- response to organic substance [IDA]
- toll-like receptor 10 signaling pathway [TAS]
- toll-like receptor 2 signaling pathway [TAS]
- toll-like receptor 3 signaling pathway [TAS]
- toll-like receptor 4 signaling pathway [TAS]
- toll-like receptor 5 signaling pathway [TAS]
- toll-like receptor 9 signaling pathway [TAS]
- toll-like receptor TLR1:TLR2 signaling pathway [TAS]
- toll-like receptor TLR6:TLR2 signaling pathway [TAS]
- toll-like receptor signaling pathway [TAS]
Gene Ontology Molecular Function- DNA binding [IDA]
- NF-kappaB binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- activating transcription factor binding [IPI]
- chromatin binding [IDA]
- identical protein binding [IDA, IPI]
- phosphate ion binding [IDA]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- protein kinase binding [IPI]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- ubiquitin protein ligase binding [IPI]
- DNA binding [IDA]
- NF-kappaB binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- activating transcription factor binding [IPI]
- chromatin binding [IDA]
- identical protein binding [IDA, IPI]
- phosphate ion binding [IDA]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- protein kinase binding [IPI]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- ubiquitin protein ligase binding [IPI]
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
HIV transcriptional activation by the accessory protein, VPR, is mediated by the p300 co-activator.
The accessory protein, Vpr, is a virion-associated protein that is required for HIV-1 replication in macrophages and regulates viral gene expression in T cells. Vpr causes arrest of cell cycle progression at G2/M, presumably through its effect on cyclin B1.Cdc2 activity. Here, we show that the ability of Vpr to activate HIV transcription correlates with its ability to induce G2/M ... [more]
Throughput
- Low Throughput
Additional Notes
- Figure 5
Curated By
- BioGRID