HIF1A
Gene Ontology Biological Process
- Notch signaling pathway [TAS]
- axon transport of mitochondrion [IMP]
- cellular response to hypoxia [IDA, IEP, TAS]
- cellular response to interleukin-1 [IEP]
- collagen metabolic process [ISS]
- connective tissue replacement involved in inflammatory response wound healing [ISS]
- elastin metabolic process [ISS]
- epithelial to mesenchymal transition [ISS]
- mRNA transcription from RNA polymerase II promoter [IC]
- negative regulation of oxidative stress-induced neuron intrinsic apoptotic signaling pathway [IDA]
- oxygen homeostasis [IDA]
- positive regulation of angiogenesis [IC]
- positive regulation of chemokine production [TAS]
- positive regulation of chemokine-mediated signaling pathway [IC]
- positive regulation of endothelial cell proliferation [IC]
- positive regulation of epithelial cell migration [ISS]
- positive regulation of erythrocyte differentiation [IC]
- positive regulation of glycolytic process [IC]
- positive regulation of hormone biosynthetic process [IDA]
- positive regulation of nitric-oxide synthase activity [TAS]
- positive regulation of receptor biosynthetic process [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IGI]
- positive regulation of transcription from RNA polymerase II promoter in response to hypoxia [IDA, IMP]
- positive regulation of transcription, DNA-templated [IDA, IMP]
- positive regulation of vascular endothelial growth factor receptor signaling pathway [IC]
- positive regulation vascular endothelial growth factor production [IDA, IMP]
- regulation of gene expression [IDA]
- regulation of transcription from RNA polymerase II promoter in response to hypoxia [TAS]
- regulation of transcription from RNA polymerase II promoter in response to oxidative stress [IDA]
- regulation of transcription, DNA-templated [IDA]
- regulation of transforming growth factor beta2 production [IMP]
- response to hypoxia [IDA, IMP]
- signal transduction [IMP]
- vascular endothelial growth factor production [IDA]
Gene Ontology Molecular Function- Hsp90 protein binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [IDA]
- enzyme binding [IPI]
- histone acetyltransferase binding [IPI]
- nuclear hormone receptor binding [IPI]
- protein binding [IPI]
- protein heterodimerization activity [IPI, TAS]
- protein kinase binding [IPI]
- sequence-specific DNA binding [IDA]
- sequence-specific DNA binding transcription factor activity [IDA, TAS]
- transcription factor binding [IPI]
- transcription factor binding transcription factor activity [IDA]
- ubiquitin protein ligase binding [IPI]
- Hsp90 protein binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [IDA]
- enzyme binding [IPI]
- histone acetyltransferase binding [IPI]
- nuclear hormone receptor binding [IPI]
- protein binding [IPI]
- protein heterodimerization activity [IPI, TAS]
- protein kinase binding [IPI]
- sequence-specific DNA binding [IDA]
- sequence-specific DNA binding transcription factor activity [IDA, TAS]
- transcription factor binding [IPI]
- transcription factor binding transcription factor activity [IDA]
- ubiquitin protein ligase binding [IPI]
Gene Ontology Cellular Component
MED23
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
HIF1A employs CDK8-mediator to stimulate RNAPII elongation in response to hypoxia.
The transcription factor HIF1A is a key mediator of the cellular response to hypoxia. Despite the importance of HIF1A in homeostasis and various pathologies, little is known about how it regulates RNA polymerase II (RNAPII). We report here that HIF1A employs a specific variant of the Mediator complex to stimulate RNAPII elongation. The Mediator-associated kinase CDK8, but not the paralog ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID