RPS3
Gene Ontology Biological Process
- DNA catabolic process, endonucleolytic [IBA, IDA]
- RNA metabolic process [TAS]
- SRP-dependent cotranslational protein targeting to membrane [TAS]
- cellular protein metabolic process [TAS]
- cellular response to DNA damage stimulus [IEP]
- cytoplasmic translation [IBA]
- gene expression [TAS]
- mRNA metabolic process [TAS]
- negative regulation of DNA repair [IMP]
- nuclear-transcribed mRNA catabolic process, nonsense-mediated decay [TAS]
- positive regulation of DNA N-glycosylase activity [IDA]
- positive regulation of NF-kappaB transcription factor activity [IMP]
- positive regulation of apoptotic signaling pathway [IDA]
- translation [IC, NAS, TAS]
- translational elongation [TAS]
- translational initiation [NAS, TAS]
- translational termination [TAS]
- viral life cycle [TAS]
- viral process [TAS]
- viral transcription [TAS]
Gene Ontology Molecular Function- DNA-(apurinic or apyrimidinic site) lyase activity [IDA]
- NF-kappaB binding [IPI]
- damaged DNA binding [IDA]
- enzyme binding [IPI]
- iron-sulfur cluster binding [NAS]
- mRNA binding [IDA]
- oxidized purine nucleobase lesion DNA N-glycosylase activity [IBA]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein kinase A binding [IPI]
- protein kinase binding [IPI]
- structural constituent of ribosome [IDA, NAS]
- DNA-(apurinic or apyrimidinic site) lyase activity [IDA]
- NF-kappaB binding [IPI]
- damaged DNA binding [IDA]
- enzyme binding [IPI]
- iron-sulfur cluster binding [NAS]
- mRNA binding [IDA]
- oxidized purine nucleobase lesion DNA N-glycosylase activity [IBA]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein kinase A binding [IPI]
- protein kinase binding [IPI]
- structural constituent of ribosome [IDA, NAS]
Gene Ontology Cellular Component
RPSA
Gene Ontology Biological Process
- RNA metabolic process [TAS]
- SRP-dependent cotranslational protein targeting to membrane [TAS]
- cellular protein metabolic process [TAS]
- endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S rRNA and LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) [IBA]
- endonucleolytic cleavage to generate mature 3'-end of SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-rRNA) [IBA]
- gene expression [TAS]
- mRNA metabolic process [TAS]
- nuclear-transcribed mRNA catabolic process, nonsense-mediated decay [TAS]
- rRNA export from nucleus [IBA]
- ribosomal small subunit assembly [IBA]
- translation [IBA, IC, TAS]
- translational elongation [TAS]
- translational initiation [TAS]
- translational termination [TAS]
- viral life cycle [TAS]
- viral process [TAS]
- viral transcription [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Co-fractionation
Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex.
Publication
Panorama of ancient metazoan macromolecular complexes
Macromolecular complexes are essential to conserved biological processes, but their prevalence across animals is unclear. By combining extensive biochemical fractionation with quantitative mass spectrometry, here we directly examined the composition of soluble multiprotein complexes among diverse metazoan models. Using an integrative approach, we generated a draft conservation map consisting of more than one million putative high-confidence co-complex interactions for species ... [more]
Quantitative Score
- 0.995571966 [Confidence Score]
Throughput
- High Throughput
Additional Notes
- Fractionation was combined with mass spectrometry from five diverse animal species to predict co-complex protein interactions conserved across metazoa using an integrative computational scoring procedure along with an SVM approach. The significant data set of 16655 PPI, was derived from a set of more than 1M interactions by examining a ROC curve of predicted interactions against reference annotated complexes at a 67.5% cumulative precision.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RPSA RPS3 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 0.8043 | BioGRID | 2268321 | |
RPS3 RPSA | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 0.8938 | BioGRID | 3095448 | |
RPSA RPS3 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 0.9875 | BioGRID | 3196097 | |
RPS3 RPSA | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | 1 | BioGRID | 742608 | |
RPSA RPS3 | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | - | BioGRID | 3436178 | |
RPS3 RPSA | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | - | BioGRID | 922497 | |
RPSA RPS3 | Cross-Linking-MS (XL-MS) Cross-Linking-MS (XL-MS) An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071). | High | - | BioGRID | - |
Curated By
- BioGRID