BAIT

GLC7

CID1, DIS2, type 1 serine/threonine-protein phosphatase catalytic subunit GLC7, DIS2S1, PP1, L000000706, YER133W
Type 1 serine/threonine protein phosphatase catalytic subunit; cleavage and polyadenylation factor (CPF) component; involved in various processes including glycogen metabolism, sporulation, mitosis; accumulates at mating projections by interaction with Afr1p; interacts with many regulatory subunits; involved in regulation of the nucleocytoplasmic shuttling of Hxk2p; import into nucleus is inhibited during spindle assembly checkpoint arrest
Saccharomyces cerevisiae (S288c)
PREY

SIP5

YMR140W
Protein of unknown function; interacts with both the Reg1p/Glc7p phosphatase and the Snf1p kinase; forms cytoplasmic foci upon DNA replication stress
GO Process (1)
GO Function (0)
GO Component (1)

Gene Ontology Biological Process

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Publication

Sip5 interacts with both the Reg1/Glc7 protein phosphatase and the Snf1 protein kinase of Saccharomyces cerevisiae.

Sanz P, Ludin K, Carlson M

The Snf1 protein kinase is an essential component of the glucose starvation signalling pathway in Saccharomyces cerevisiae. We have used the two-hybrid system to identify a new protein, Sip5, that interacts with the Snf1 kinase complex in response to glucose limitation. Coimmunoprecipitation studies confirmed the association of Sip5 and Snf1 in cell extracts. We found that Sip5 also interacts strongly ... [more]

Genetics Jan. 01, 2000; 154(1);99-107 [Pubmed: 10628972]

Throughput

  • Low Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
GLC7 SIP5
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low/High-BioGRID
332072
GLC7 SIP5
Two-hybrid
Two-hybrid

Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

Low-BioGRID
-

Curated By

  • BioGRID