TOR1
Gene Ontology Biological Process
- TOR signaling [IC, IMP]
- cellular response to DNA damage stimulus [IMP]
- fungal-type cell wall organization [IMP]
- meiotic nuclear division [IMP]
- mitochondria-nucleus signaling pathway [IMP]
- negative regulation of autophagy [IGI]
- regulation of cell cycle [IMP]
- regulation of cell growth [IMP]
- regulation of sphingolipid biosynthetic process [IMP]
- ribosome biogenesis [IMP]
- transcription of nuclear large rRNA transcript from RNA polymerase I promoter [IMP]
- translational initiation [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
LST8
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control.
The target of rapamycin (TOR) proteins in Saccharomyces cerevisiae, TOR1 and TOR2, redundantly regulate growth in a rapamycin-sensitive manner. TOR2 additionally regulates polarization of the actin cytoskeleton in a rapamycin-insensitive manner. We describe two functionally distinct TOR complexes. TOR Complex 1 (TORC1) contains TOR1 or TOR2, KOG1 (YHR186c), and LST8. TORC2 contains TOR2, AVO1 (YOL078w), AVO2 (YMR068w), AVO3 (YER093c), and ... [more]
Throughput
- Low Throughput
Additional Notes
- Figure 2
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
TOR1 LST8 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 1 | BioGRID | - | |
TOR1 LST8 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
LST8 TOR1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
LST8 TOR1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
LST8 TOR1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
LST8 TOR1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | 137178 | |
LST8 TOR1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
TOR1 LST8 | Co-purification Co-purification An interaction is inferred from the identification of two or more protein subunits in a purified protein complex, as obtained by classical biochemical fractionation or affinity purification and one or more additional fractionation steps. | Low | - | BioGRID | - | |
LST8 TOR1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.3097 | BioGRID | 2008365 | |
TOR1 LST8 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.3185 | BioGRID | 2052283 |
Curated By
- BioGRID