ADR1
Gene Ontology Biological Process
- cellular response to oleic acid [IPI]
- chromatin organization [IDA]
- chromatin organization involved in regulation of transcription [IGI, IMP, IPI]
- negative regulation of chromatin silencing [IDA]
- peroxisome organization [IMP]
- positive regulation of ethanol catabolic process by positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of fatty acid beta-oxidation by positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of peroxisome organization by positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase II promoter by oleic acid [IMP]
- positive regulation of transcription from RNA polymerase II promoter in response to ethanol [IMP]
Gene Ontology Molecular Function- RNA polymerase II activating transcription factor binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity [IDA]
- RNA polymerase II transcription factor binding transcription factor activity involved in positive regulation of transcription [IPI]
- TFIIB-class transcription factor binding [IDA]
- TFIID-class transcription factor binding [IDA]
- sequence-specific DNA binding [IDA]
- RNA polymerase II activating transcription factor binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity [IDA]
- RNA polymerase II transcription factor binding transcription factor activity involved in positive regulation of transcription [IPI]
- TFIIB-class transcription factor binding [IDA]
- TFIID-class transcription factor binding [IDA]
- sequence-specific DNA binding [IDA]
ADA2
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
ADR1 activation domains contact the histone acetyltransferase GCN5 and the core transcriptional factor TFIIB.
The yeast transcriptional activator ADR1, which is required for ADH2 and peroxisomal gene expression, contains four separable and partially redundant activation domains (TADs). Mutations in ADA2 or GCN5, encoding components of the ADA coactivator complex involved in histone acetylation, severely reduced LexA-ADR1-TAD activation of a LexA-lacZ reporter gene. Similarly, the ability of the wild-type ADR1 gene to activate an ADH2-driven ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID