PREY

MIG1

CAT4, SSN1, TDS22, transcription factor MIG1, L000001110, YGL035C
Transcription factor involved in glucose repression; sequence specific DNA binding protein containing two Cys2His2 zinc finger motifs; regulated by the SNF1 kinase and the GLC7 phosphatase; regulates filamentous growth along with Mig2p in response to glucose depletion; activated in stochastic pulses of nuclear localization, shuttling between cytosol and nucleus depending on external glucose levels and its phosphorylation state
Saccharomyces cerevisiae (S288c)

Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Publication

The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor.

Papamichos-Chronakis M, Gligoris T, Tzamarias D

Among lower eukaryotes, glucose repression is a conserved, widely spread mechanism regulating carbon catabolism. The yeast Snf1 kinase, the Mig1 DNA-binding repressor and the Mig1-interacting co-repressor complex Cyc8(Ssn6)-Tup1 are central components of this pathway. Previous experiments suggested that cytoplasmic translocation of Mig1, upon its phosphorylation by Snf1 in the nucleus, is the key regulatory step for releasing glucose repression. In ... [more]

EMBO Rep. Apr. 01, 2004; 5(4);368-72 [Pubmed: 15031717]

Throughput

  • Low Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
MIG1 CYC8
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
2342724
CYC8 MIG1
Reconstituted Complex
Reconstituted Complex

An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.

Low-BioGRID
-
MIG1 CYC8
Reconstituted Complex
Reconstituted Complex

An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.

Low-BioGRID
-
MIG1 CYC8
Two-hybrid
Two-hybrid

Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

Low-BioGRID
-

Curated By

  • BioGRID