STAT1
Gene Ontology Biological Process
- JAK-STAT cascade [IDA]
- JAK-STAT cascade involved in growth hormone signaling pathway [TAS]
- apoptotic process [ISS]
- blood circulation [ISS]
- cellular response to interferon-beta [IMP]
- cytokine-mediated signaling pathway [TAS]
- endothelial cell migration [IMP]
- interferon-gamma-mediated signaling pathway [IDA, ISS, TAS]
- metanephric mesenchymal cell differentiation [ISS]
- metanephric mesenchymal cell proliferation involved in metanephros development [ISS]
- negative regulation by virus of viral protein levels in host cell [IMP]
- negative regulation of I-kappaB kinase/NF-kappaB signaling [IMP]
- negative regulation of angiogenesis [IMP]
- negative regulation of endothelial cell proliferation [IMP]
- negative regulation of mesenchymal to epithelial transition involved in metanephros morphogenesis [ISS]
- negative regulation of metanephric nephron tubule epithelial cell differentiation [ISS]
- negative regulation of transcription from RNA polymerase II promoter [ISS]
- positive regulation of mesenchymal cell proliferation [ISS]
- positive regulation of smooth muscle cell proliferation [ISS]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP]
- positive regulation of transcription, DNA-templated [IDA]
- regulation of apoptotic process [TAS]
- regulation of interferon-gamma-mediated signaling pathway [TAS]
- regulation of transcription from RNA polymerase II promoter [IDA]
- regulation of type I interferon-mediated signaling pathway [TAS]
- renal tubule development [IMP]
- response to cAMP [ISS]
- response to cytokine [ISS]
- response to peptide hormone [ISS]
- transcription from RNA polymerase II promoter [IDA]
- tumor necrosis factor-mediated signaling pathway [IDA]
- type I interferon signaling pathway [ISS, TAS]
Gene Ontology Molecular Function- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter sequence-specific DNA binding transcription factor activity [IDA]
- double-stranded DNA binding [IDA]
- enzyme binding [IPI]
- identical protein binding [IPI]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- sequence-specific DNA binding transcription factor activity [IDA]
- tumor necrosis factor receptor binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter sequence-specific DNA binding transcription factor activity [IDA]
- double-stranded DNA binding [IDA]
- enzyme binding [IPI]
- identical protein binding [IPI]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- sequence-specific DNA binding transcription factor activity [IDA]
- tumor necrosis factor receptor binding [IPI]
MTOR
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- T cell costimulation [TAS]
- TOR signaling [IMP]
- cell growth [IDA, TAS]
- cellular response to hypoxia [ISS]
- cellular response to nutrient levels [ISS]
- double-strand break repair via homologous recombination [IBA]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- growth [NAS]
- innate immune response [TAS]
- insulin receptor signaling pathway [TAS]
- negative regulation of autophagy [ISS]
- neurotrophin TRK receptor signaling pathway [TAS]
- peptidyl-serine phosphorylation [IMP]
- phosphatidylinositol-mediated signaling [TAS]
- phosphorylation [IDA]
- positive regulation of gene expression [IMP]
- positive regulation of lipid biosynthetic process [IMP]
- positive regulation of protein phosphorylation [IDA]
- positive regulation of transcription from RNA polymerase III promoter [IMP]
- positive regulation of translation [IDA]
- protein autophosphorylation [IDA]
- protein catabolic process [TAS]
- protein phosphorylation [IDA, IMP]
- regulation of actin cytoskeleton organization [IMP]
- response to amino acid [IDA]
- response to nutrient [NAS]
- response to stress [IMP]
- signal transduction [NAS]
Gene Ontology Molecular Function- RNA polymerase III type 1 promoter DNA binding [IDA]
- RNA polymerase III type 2 promoter DNA binding [IDA]
- RNA polymerase III type 3 promoter DNA binding [IDA]
- TFIIIC-class transcription factor binding [IDA]
- kinase activity [IDA, TAS]
- phosphoprotein binding [IPI]
- protein binding [IPI]
- protein dimerization activity [IBA]
- protein serine/threonine kinase activity [IDA, TAS]
- RNA polymerase III type 1 promoter DNA binding [IDA]
- RNA polymerase III type 2 promoter DNA binding [IDA]
- RNA polymerase III type 3 promoter DNA binding [IDA]
- TFIIIC-class transcription factor binding [IDA]
- kinase activity [IDA, TAS]
- phosphoprotein binding [IPI]
- protein binding [IPI]
- protein dimerization activity [IBA]
- protein serine/threonine kinase activity [IDA, TAS]
Gene Ontology Cellular Component
Co-localization
Interaction inferred from two proteins that co-localize in the cell by indirect immunofluorescence only when in addition, if one gene is deleted, the other protein becomes mis-localized. Also includes co-dependent association of proteins with promoter DNA in chromatin immunoprecipitation experiments.
Publication
Using an in situ proximity ligation assay to systematically profile endogenous protein-protein interactions in a pathway network.
Signal transduction pathways in the cell require protein-protein interactions (PPIs) to respond to environmental cues. Diverse experimental techniques for detecting PPIs have been developed. However, the huge amount of PPI data accumulated from various sources poses a challenge with respect to data reliability. Herein, we collected ∼ 700 primary antibodies and employed a highly sensitive and specific technique, an in ... [more]
Throughput
- High Throughput
Additional Notes
- in situ PLA
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
STAT1 MTOR | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
MTOR STAT1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
MTOR STAT1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
STAT1 MTOR | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
STAT1 MTOR | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | Low | - | BioGRID | - |
Curated By
- BioGRID