JUN
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- MyD88-dependent toll-like receptor signaling pathway [TAS]
- MyD88-independent toll-like receptor signaling pathway [TAS]
- SMAD protein import into nucleus [IDA]
- SMAD protein signal transduction [IDA]
- TRIF-dependent toll-like receptor signaling pathway [TAS]
- innate immune response [TAS]
- negative regulation by host of viral transcription [IDA]
- negative regulation of DNA binding [IDA]
- negative regulation of transcription from RNA polymerase II promoter in response to endoplasmic reticulum stress [IMP]
- negative regulation of transcription, DNA-templated [IDA]
- positive regulation by host of viral transcription [IDA]
- positive regulation of Rho GTPase activity [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IC, IDA]
- positive regulation of transcription, DNA-templated [IDA]
- regulation of sequence-specific DNA binding transcription factor activity [TAS]
- stress-activated MAPK cascade [TAS]
- toll-like receptor 10 signaling pathway [TAS]
- toll-like receptor 2 signaling pathway [TAS]
- toll-like receptor 3 signaling pathway [TAS]
- toll-like receptor 4 signaling pathway [TAS]
- toll-like receptor 5 signaling pathway [TAS]
- toll-like receptor 9 signaling pathway [TAS]
- toll-like receptor TLR1:TLR2 signaling pathway [TAS]
- toll-like receptor TLR6:TLR2 signaling pathway [TAS]
- toll-like receptor signaling pathway [TAS]
- transforming growth factor beta receptor signaling pathway [IDA]
Gene Ontology Molecular Function- DNA binding [TAS]
- R-SMAD binding [IPI]
- RNA polymerase II activating transcription factor binding [IPI]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [IC, IDA]
- RNA polymerase II transcription factor binding transcription factor activity involved in positive regulation of transcription [IC]
- Rho GTPase activator activity [IDA]
- cAMP response element binding [IDA]
- enzyme binding [IPI]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- sequence-specific DNA binding RNA polymerase II transcription factor activity [IC]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription coactivator activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- DNA binding [TAS]
- R-SMAD binding [IPI]
- RNA polymerase II activating transcription factor binding [IPI]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [IC, IDA]
- RNA polymerase II transcription factor binding transcription factor activity involved in positive regulation of transcription [IC]
- Rho GTPase activator activity [IDA]
- cAMP response element binding [IDA]
- enzyme binding [IPI]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- sequence-specific DNA binding RNA polymerase II transcription factor activity [IC]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription coactivator activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
Gene Ontology Cellular Component
BATF3
Gene Ontology Biological Process
Gene Ontology Molecular Function- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- sequence-specific DNA binding transcription factor activity [TAS]
- transcription corepressor activity [TAS]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- sequence-specific DNA binding transcription factor activity [TAS]
- transcription corepressor activity [TAS]
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Proteomic analyses reveal distinct chromatin-associated and soluble transcription factor complexes.
The current knowledge on how transcription factors (TFs), the ultimate targets and executors of cellular signalling pathways, are regulated by protein-protein interactions remains limited. Here, we performed proteomics analyses of soluble and chromatin-associated complexes of 56 TFs, including the targets of many signalling pathways involved in development and cancer, and 37 members of the Forkhead box (FOX) TF family. Using ... [more]
Throughput
- High Throughput
Additional Notes
- High-confidence interactions
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
JUN BATF3 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 3359027 | |
BATF3 JUN | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 1 | BioGRID | 2224698 | |
BATF3 JUN | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 0.9999 | BioGRID | 3097996 | |
BATF3 JUN | FRET FRET An interaction is inferred when close proximity of interaction partners is detected by fluorescence resonance energy transfer between pairs of fluorophore-labeled molecules, such as occurs between CFP (donor) and YFP (acceptor) fusion proteins. | High | - | BioGRID | - | |
JUN BATF3 | FRET FRET An interaction is inferred when close proximity of interaction partners is detected by fluorescence resonance energy transfer between pairs of fluorophore-labeled molecules, such as occurs between CFP (donor) and YFP (acceptor) fusion proteins. | High | - | BioGRID | - | |
BATF3 JUN | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | - |
Curated By
- BioGRID