BAIT

SLK19

L000004340, YOR195W
Kinetochore-associated protein; required for chromosome segregation and kinetochore clustering; required for normal segregation of chromosomes in meiosis and mitosis; component of the FEAR regulatory network, which promotes Cdc14p release from the nucleolus during anaphase; potential Cdc28p substrate
Saccharomyces cerevisiae (S288c)
PREY

CDC14

OAF3, phosphoprotein phosphatase CDC14, L000000254, YFR028C
Protein phosphatase required for mitotic exit; required for rDNA segregation, cytokinesis, meiosis I spindle disassembly, and environmental stress response; maintained in nucleolus by Cdc55p in early meiosis until liberated by the FEAR and Mitotic Exit Network in anaphase, enabling it to effect a decrease in CDK/B-cyclin activity and mitotic exit; sequestered in metaphase II, then released again upon entry into anaphase II
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Cdc14 Early Anaphase Release, FEAR, Is Limited to the Nucleus and Dispensable for Efficient Mitotic Exit.

Yellman CM, Roeder GS

Cdc14 phosphatase is a key regulator of exit from mitosis, acting primarily through antagonism of cyclin-dependent kinase, and is also thought to be important for meiosis. Cdc14 is released from its sequestration site in the nucleolus in two stages, first by the non-essential Cdc Fourteen Early Anaphase Release (FEAR) pathway and later by the essential Mitotic Exit Network (MEN), which ... [more]

PLoS ONE Jun. 20, 2015; 10(6);e0128604 [Pubmed: 26090959]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • Figure 6

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CDC14 SLK19
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3265BioGRID
378116
SLK19 CDC14
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3346BioGRID
2070631
CDC14 SLK19
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2988BioGRID
1980154
CDC14 SLK19
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
320529
SLK19 CDC14
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
253821

Curated By

  • BioGRID